Что такое частотный преобразователь, как он работает и для чего нужен

Содержание

Принцип работы частотного преобразователя для асинхронного двигателя

Что такое частотный преобразователь, как он работает и для чего нужен

Трехфазные асинхронные двигатели нашли самое широкое применение в промышленности и других областях. Современное оборудование просто невозможно представить без этих агрегатов.

Одной из важнейших составляющих рабочего цикла машин и механизмов является их плавный пуск и такая же плавная остановка после выполнения поставленной задачи. Такой режим обеспечивается путем использования преобразователей частоты.

Эти устройства проявили себя наиболее эффективными в больших электродвигателях, обладающих высокой мощностью.

С помощью преобразователей частоты успешно выполняется регулировка пусковых токов, с возможностью контроля и ограничения их величины до нужных значений.

Для правильного использования данной аппаратуры необходимо знать принцип работы частотного преобразователя для асинхронного двигателя. Его применение позволяет существенно увеличить срок службы оборудования и снизить потери электроэнергии.

Электронное управление, кроме мягкого пуска, обеспечивает плавную регулировку работы привода в соответствии с установленным соотношением между частотой и напряжением.

Что такое частотный преобразователь

Основной функцией частотных преобразователей является плавная регулировка скорости вращения асинхронных двигателей. С этой целью на выходе устройства создается трехфазное напряжение с переменной частотой.

Преобразователи частоты нередко называются инверторами. Их основной принцип действия заключается в выпрямлении переменного напряжения промышленной сети.

Для этого применяются выпрямительные диоды, объединенные в общий блок. Фильтрация тока осуществляется конденсаторами с высокой емкостью, которые снижают до минимума пульсации поступающего напряжения.

В этом и заключается ответ на вопрос для чего нужен частотный преобразователь.

В некоторых случаях в схему может быть включена так называемая цепь слива энергии, состоящая из транзистора и резистора с большой мощностью рассеивания. Данная схема применяется в режиме торможения, чтобы погасить напряжение, генерируемое электродвигателем. Таким образом, предотвращается перезарядка конденсаторов и преждевременный выход их из строя.

В результате использования частотников, асинхронные двигатели успешно заменяют электроприводы постоянного тока, имеющие серьезные недостатки. Несмотря на простоту регулировки, они считаются ненадежными и дорогими в эксплуатации. В процессе работы постоянно искрят щетки, а электроэрозия приводит к износу коллектора.

Двигатели постоянного тока совершенно не подходят для взрывоопасной и запыленной среды.

В отличие от них, асинхронные двигатели значительно проще по своему устройству и надежнее, благодаря отсутствию подвижных контактов. Они более компактные и дешевые в эксплуатации. К основному недостатку можно отнести сложную регулировку скорости вращения традиционными способами.

Для этого было необходимо изменять питающее напряжение и вводить дополнительные сопротивления в цепь обмоток. Кроме того, применялись и другие способы, которые на практике оказывались неэкономичными и не обеспечивали качественной регулировки скорости.

Но, после того как появился преобразователь частоты для асинхронного двигателя, позволяющий плавно регулировать скорость в широком диапазоне, все проблемы разрешились.

Одновременно с частотой изменяется и подводимое напряжение, что позволяет увеличить КПД и коэффициент мощности электродвигателя. Все это позволяет получить высокие энергетические показатели асинхронных двигателей, продлить срок их эксплуатации.

Принцип действия частотного преобразователя

Эффективное и качественное управление асинхронными электродвигателями стало возможно за счет использования совместно с ними частотных преобразователей. Общая конструкция представляет собой частотно-регулируемый привод, который позволил существенно улучшить технические характеристики машин и механизмов.

В качестве управляющего элемента данной системы выступает преобразователь частоты, основной функцией которого является изменение частоты питающего напряжения.

Его конструкция выполнена в виде статического электронного узла, а формирование переменного напряжения с заданной изменяемой частотой осуществляется на выходных клеммах.

Таким образом, за счет изменения амплитуды напряжения и частоты регулируется скорость вращения электродвигателя.

Управление асинхронными двигателями осуществляется двумя способами:

  • Скалярное управление действует в соответствии с линейным законом, согласно которому амплитуда и частота находятся в пропорциональной зависимости между собой. Изменяющаяся частота приводит к изменениям амплитуды поступающего напряжения, оказывая влияние на уровень крутящего момента, коэффициент полезного действия и коэффициент мощности агрегата. Следует учитывать зависимость выходной частоты и питающего напряжения от момента нагрузки на валу двигателя. Для того чтобы момент нагрузки был всегда равномерным, отношение амплитуды напряжения к выходной частоте должно быть постоянным. Данное равновесие как раз и поддерживается частотным преобразователем.
  • Векторное управление удерживает момент нагрузки в постоянном виде во всем диапазоне частотных регулировок. Повышается точность управления, электропривод более гибко реагирует на изменяющуюся выходную нагрузку. В результате, момент вращения двигателя находится под непосредственным управлением преобразователя. Нужно учитывать, что момент вращения образуется в зависимости от тока статора, а точнее – от создаваемого им магнитного поля. Под векторным управлением фаза статорного тока изменяется. Эта фаза и есть вектор тока осуществляющий непосредственное управление моментом вращения.

Настройка частотного преобразователя для электродвигателя

Для того чтобы преобразователь частоты для асинхронного двигателя в полном объеме выполнял свои функции, его необходимо правильно подключить и настроить. В самом начале подключения в сети перед прибором размещается автоматический выключатель.

Его номинал должен совпадать с величиной тока, потребляемого двигателем. Если частотник предполагается эксплуатировать в трехфазной сети, то автомат также должен быть трехфазным, с общим рычагом.

В этом случае при коротком замыкании на одной из фаз можно оперативно отключить и другие фазы.

Ток срабатывания должен обладать характеристиками, полностью соответствующими току отдельной фазы электродвигателя.

Если частотный преобразователь планируется использовать в однофазной сети, в этом случае рекомендуется воспользоваться одинарным автоматом, номинал которого должен в три раза превышать ток одной фазы.

Независимо от количества фаз, при установке частотника, автоматы не должны включаться в разрыв заземляющего или нулевого провода. Рекомендуется использовать только прямое подключение.

При правильной настройке и подключении частотного преобразователя, его фазные провода должны соединяться с соответствующими контактами электродвигателя.

Предварительно обмотки в двигателе соединяются по схеме «звезда» или «треугольник», в зависимости от напряжения, выдаваемого преобразователем.

Если оно совпадает с меньшим значением, указанным на корпусе двигателя, то применяется соединение треугольником. При более высоком значении используется схема «звезда».

Далее выполняется подключение частотного преобразователя к контроллеру и пульту управления, который входит в комплект поставки. Все соединения осуществляются в соответствии со схемой, приведенной в руководстве по эксплуатации.

Рукоятка должна находиться в нейтральном положении, после чего включается автомат. Нормальное включение подтверждается световым индикатором, загорающимся на пульте.

Для того чтобы преобразователь заработал, нажимается кнопка RUN, запрограммированная по умолчанию.

После незначительного поворота рукоятки, двигатель начинает постепенно вращаться. Для переключения вращения в обратную сторону, существует специальная кнопка реверса.

Затем с помощью рукоятки настраивается нужная частота вращения. На некоторых пультах вместо частоты вращения электродвигателя, отображаются данные о частоте напряжения.

Поэтому рекомендуется заранее внимательно изучить интерфейс установленной аппаратуры.

Частотные преобразователи для асинхронных двигателей

Благодаря частотным преобразователям, работа современных асинхронных двигателей отличается высокой эффективностью, устойчивостью и безопасностью. Это особенно важно, поскольку каждый электродвигатель отличается индивидуальными особенностями режима работы.

Поэтому оптимизации параметров питания агрегатов с использованием преобразователей частоты придается большое значение. Когда частотный преобразователь выбирается для каких-либо конкретных целей, в этом случае должны обязательно учитываться его рабочие параметры.

Нормальная работа устройства будет зависеть от типа электродвигателя, его мощности, диапазона, скорости и точности регулировок, а также от поддержания стабильного момента вращения вала.

Эти показатели имеют первостепенное значение и должны органично сочетаться с габаритами и формой аппарата.

Следует обратить особое внимание на то, как расположены элементы управления и будет ли удобно им пользоваться.

Выбирая устройство, необходимо заранее знать, в каких условиях оно будет эксплуатироваться. Если сеть однофазная, то и преобразователь должен быть таким же. То же самое касается и трехфазных аппаратов. Многое зависит от мощности асинхронных двигателей. Если при запуске на валу необходим высокий пусковой момент, то и частотный преобразователь должен быть рассчитан на большее значение тока.

Источник: https://electric-220.ru/news/princip_raboty_chastotnogo_preobrazovatelja_dlja_asinkhronnogo_dvigatelja/2017-03-30-1215

Что такое преобразователь частоты и для чего он нужен?

Что такое частотный преобразователь, как он работает и для чего нужен

Для регулирования работы асинхронного двигателя с целью не допустить снижения его КПД применяют специальные устройства – частотные преобразователи. Их работа заключается в том, что они плавно изменяют скорость вращения двигателя, с помощью смены частоты питающего напряжения.

В данной статье мы постараемся рассмотреть ряд незаметных, на первый взгляд, особенностей в работе асинхронного электродвигателя и проанализируем, насколько важно в ходе его эксплуатации использовать частотный преобразователь.

Что может привести к неисправности?

В асинхронном двигателе напряжение для работы чаще всего поступает через последовательно включенный автоматический выключатель. То сесть данный способ запуска двигателя по другому называется – плавный пуск. Таким образом это провоцирует высокий рост тока пусковой обмотки, что для оборудования закончится весьма плачевно.

Частотный преобразователь имеет к этому важное отношение – он контролирует ток электродвигателя. Формируя необходимое напряжение нужной амплитуды и частоты, частотник подает их на двигатель.

Поясним – в процессе его запуска преобразователь отдает не полную частоту, скажем, в 50 Герц, а где-то 0,1Гц (или чуть больше).

То же самое и с напряжением – не все 220 В или 380 В, а около 20-30 (смотря, какие выставлены настройки).

Принцип работы преобразователя частоты для электродвигателя

Все это позволяет пропускать через обмотку статора ток оптимального значения, не выше номинального показателя, чтобы создать магнитное поле, которое, в свою очередь, вместе с созданным в обмотке током создаст крутящий момент.

Что касается принципов изменения характеристик напряжения, то подробно об этом, а также о критериях выбора частотника, вы можете прочесть здесь, в одной из других наших статей.

Кстати, если говорить о критериях выбора, то отметим также, что выходные токи преобразователя частоты должны быть ниже тока полного режима нагрузки.

Выше мы описывали старт двигателя. Что касается разгона, то в ходе этого процесса преобразователь плавно повышает частоту и величину поступаемого напряжения, тем самым разгоняя двигатель.

Главное – настроить частотник таким образом, чтобы времени на разгон уходило как можно меньше, а ток обмотки статора не был выше её номинального значения.

Кроме того, важно поддерживать достаточный крутящий момент на валу.

Почему без преобразователя не обойтись? Главные преимущества его использования

Итак, преобразователь частоты дает следующие преимущества при управлении асинхронным двигателем:

  1. Плавный пуск и остановка электропривода
  2. Управление производительностью оборудования
  3. Установка оптимальных режимов работы
  4. Взаимное согласование электроприводов в сложных системах

Самые важные – это 1 и 2 пункты. Почему именно они?

Плавный пуск позволяет наращивать скорость постепенно, что позволяет не допустить скачков тока. Неконтролируемые скачки опасны, так как при прямом пуске они превышают номинальные показатели в 5-7 раз, что может спровоцировать высокую нагрузку на электросеть, защитит оборудование от перегрузок и сэкономит деньги на затратах электроэнергии.

Что касается управления производительностью, то в этом случае преобразователь частоты контролирует скорость работы электродвигателя с учетом «реальных нужд» в системе в целом. Это также помогает напрасно не тратить энергию и гарантирует её экономию в 30-60%.

Помимо 4-х основных преимуществ описанных выше, использование преобразователя обеспечивает следующие преимущества:

Классификация частотных преобразователей

В первую очередь, данные устройства различаются по режимам работы:

По типу питания:

Также данные устройства бывают с промежуточным звеном (связью) и без него. О характере работы таких устройств читайте тут, в ещё одной нашей статье.

Настройка

Настройка преобразователей выполняется строго по инструкции производителя и с учетом особенностей задачи, которая решается посредством оборудования, в котором установлен двигатель.

Например, если применяется асинхронный двигатель скалярного типа, то амплитуду сигнала и выходную частоту устанавливают по определенной формуле. Для других видов двигателя обычно используют датчики скорости вращения вала двигателя. Последовательность этапов алгоритма настройки мы перечислили здесь, в другом нашем материале.

Можно ли отказаться от частотных преобразователей?

Можно. Но лучше этого не делать. Безусловно, скорость вращения можно также регулировать и при помощи гидравлической муфты или механического вариатора и других. Но данные приспособления неэкономичны (а в промышленности это крайне важно!), у них узкий диапазон регулирования, что доставляет серьезные неудобства в ходе эксплуатации, а также они гораздо быстрее выйдут из строя. 

Итоги: почему нужно использовать преобразователи частоты?

Вот основной перечень преимуществ для работы оборудования, которые вы получаете, используя преобразователи:

Итак, это наиболее важная информация о частотных преобразователях, которую мы хотели до вас донести. В завершение скажем о том, от чего зависит стоимость и на что стоит обращать внимание при выборе.

Это такие факторы, как марка производителя, модель и тип управления преобразователем.

Также стоит обращать внимание при выборе на тип и уровень мощности двигателя, его диапазон и точность, а также степень точности поддержки крутящего момента.
Преобразователи частоты

Источник: https://www.Ruselt.ru/articles/preobrazovatel-chastoty-chto-takoe/

Преобразователь частоты

Что такое частотный преобразователь, как он работает и для чего нужен

Изменить скорость вращения электромотора можно, используя силовое электронное устройство – преобразователь частоты (ПЧ). С его помощью выполняют изменение частоты трёхфазного или однофазного напряжения. Изменению подвергается переменный ток частотой 50 Гц. С помощью ПЧ его преобразуют в трёх,- или однофазный ток с частотой, лежащей в интервале 1-800 Гц.

Преобразователь частоты Delta VFD004EL43A

Что такое частотник

Частотником в обиходе называют ПЧН (преобразователь частоты и напряжения). Это устройство, позволяющее не только регулировать частоту переменного тока и напряжения, но и создавать целый спектр защитных опций для присоединяемой нагрузки.

Важно! Изменение частоты на выходе ПЧ относительно частоты на входе происходит по обусловленному порядку V/f или с применением векторного регулирования.

Классификация преобразователей частоты

Подобные устройства можно разделить на два типа: электроиндукционный и электронный. К первым ПЧ относятся работающие в режиме генератора-преобразователя асинхронные моторы с фазными роторами.

Ко вторым – следует относить электронные ПЧ (инверторы). Они подразделяются на два вида:

  • непосредственные;
  • двухзвенные.

Подключаемые непосредственно в сеть и не нуждающиеся в дополнительных устройствах реверсивные преобразователи на тиристорах представляют собой непосредственные ПЧ.

Двухзвенные ПЧ включают в свой состав транзисторную или тиристорную схему (одно звено) и второе звено постоянного тока (ПТ).

К сведению. Двухзвенные преобразователи всегда идут в комплекте: инвертор частотник и выпрямитель, который выдаёт постоянный ток.

Структура частотного преобразователя

Все виды преобразователей напряжения

Состав блоков, из которых состоят устройства, зависит от их класса. Преобразователи непосредственного включения состоят из блоков:

  • блок системы управления;
  • тиристорный блок (управляемый выпрямитель);
  • электродвигатель.

Структура ПЧ с узлом постоянного тока (ПТ) выглядит следующим образом:

  • звено ПТ;
  • импульсный инвертор трёх фаз;
  • управляющая система.

Нагрузкой тоже выступает электродвигатель, частота вращения которого подлежит регулировке.

Непосредственные частотные преобразователи (НПЧ)

К этим типам устройств относятся аппараты, выполненные по двум схемам: естественного и принудительного коммутирования. Циклоконверторы обладают естественной коммутацией и включают в себя совокупность преобразователей на реверсивных тиристорах. Используются также сборки, имеющие совместное или раздельное управление.

Упрощённая схема НПЧ с естественной коммутацией Особенности преобразователя напряжения с 12В в 220 В

Принудительная коммутация НПЧ выполняется с применением запираемых тиристоров или транзисторов, входящих в состав ключей управления (матриц). Непосредственное управление осуществляет ШИМ – контроллер.

Внимание! ШИМ – это широтно-импульсная модуляция, которая позволяет управлять частотой и напряжением на двигателе, изменяя скважность управляющих ключами импульсов. В этом случае любую фазу сети можно подключить к любой фазе мотора.

ПНЧ с принудительной коммутацией

Частотные преобразователи со звеном ПТ

В состав такого звена входят выпрямитель, не имеющий управления, и фильтр. Трёхфазное переменное напряжение, поданное на его вход, выпрямляется и фильтруется. После чего снова при помощи инвертора преобразуется в переменное напряжение, но его уже возможно изменять по частоте и амплитуде.

Схема двойного преобразования

Принцип действия преобразователя частоты

Преобразователь напряжения и частоты работает следующим образом:

  • выпрямленное напряжение поступает на 6 ключей, собранных на транзисторах;
  • обмотки мотора присоединяются к «+» и «-» звена ПТ;
  • управляемый инвертор преобразует сглаженное постоянное напряжение в переменное (трёхфазное).

Управляя инвертором, изменяют такие параметры, как частота, напряжение и амплитуда (U, V, W).

Как подключить и настроить ПЧ

Подключение можно выполнять, как к трёхфазной (380 В), так и однофазной сети (220 В). При присоединении следует обеспечить следующие действия (для обоих вариантов):

  • установить защитный автомат в фазной цепи перед преобразователем (однофазный или трёхфазный выключатель);
  • выходы фаз ПЧ соединить с контактами обмоток электродвигателя, предварительно соединённых в «звезду» или «треугольник» (отмечено в инструкции по эксплуатации частотника);
  • подключить к аппарату и разместить в доступном месте управляющий ПЧ пульт.

Подключение ПЧ к трёхфазной сети

Важно! Токи автоматических выключателей подбираются по току фазы (Iф) для трёхфазной сети и трёхкратному Iф – для однофазной сети.

Подключение ПЧ к однофазной сети

После того, как схема собрана, регулятор вращения вала мотора убирают в минимальное положение. Далее выполняется следующее:

  • включают автомат и подают питание;
  • фиксируют включение по индикации светодиодов на панели (начальные показания);
  • далее нажимают кнопку «ПУСК» («RUN») кратковременным нажатием (пуск осуществится по запрограммированным изготовителем параметрам «по умолчанию»);
  • медленное вращение вала в нужную сторону указывает на правильную регулировку, в противном случае изменяют направление движения с помощью опции «реверс»;
  • после пуска выставляют желаемую частоту вращения вала электродвигателя.

Внимание! Возможно, на дисплее высвечивается частота напряжения питания (Гц) вместо значений частоты, с которой вращается вал (об./мин.). Не стоит путать эти две величины.

Для чего преобразователь напряжения и частоты (ПНЧ)

Он необходим для управления приводом синхронных и асинхронных электрических машин. Там, где необходимо осуществлять контроль над частотой вращения вала, используют ПНЧ.

Где используются частотные преобразователи

Подобной аппаратурой пользуются в промышленных масштабах: в устройствах, требующих регулировки скоростей вращения электромоторов и устранения негативного влияния амплитудных токов при пуске. К подобным устройствам относятся:

  • лифты;
  • насосы центробежные, центрифуги и вентиляторы;
  • транспортёры и поточные линии;
  • станки, требующие точного позиционирования.

Наличие обратной связи при управлении ПЧ обеспечивает корректную регулировку вращения привода.

Способ управления

Частотные преобразователи управляются разными способами. К основным командам относятся: пуск, остановка, регулировка скорости, аварийное торможение. Эти действия допустимо выполнять как с панели ПЧ, так и с пульта. Это касается подачи команд от оператора к оборудованию. Осуществлять управление работой электропривода моторов ЧМ может следующими способами:

Скалярная регулировка опирается на постоянное соотношение выходных напряжения и частоты (Uвых/Fвых). Данный метод не требует применения датчика, указывающего на текущее положение ротора. Применяется там, где нагрузки не изменяющиеся, и нет повышенных динамических нагрузок.

Важно! При такой регулировке нагрузка на двигатель влияет на скорость: при большой нагрузке скорость уменьшается, при малой – увеличивается.

Векторный метод опирается не только на контроль над U/F, но и угол, и величину вектора пространства (фазу). При данном методе отсутствует инерционность регулировки, она осуществляется в большом интервале скоростей.

Внимание! При векторном способе нагрузка не влияет на скорость вращения, постоянство скорости достигается при помощи автоматической корректировки напряжения на выходе.

Как выбрать частотник

Существует несколько критериев, по которым выбирают аппарат.

По мощности

Мощность преобразователя (P) должна быть немного больше, чем электрическая мощность двигателя, которым он будет управлять. Электрическая мощность, которую двигатель будет потреблять, равна произведению значений напряжения и тока (В*А). Частотник подбирают с 15-20% запасом мощности.

Шильдик на электродвигателе

Напряжение в сети

От того, какое напряжение будет являться питающим (380 В или 220 В), зависит выбор регулятора. Величина Uпит указана в техпаспорте прибора.

Частотная регулировка

Интервал регулировки частот преобразователя, заявленный производителем, должен позволять регулировать вращение вала присоединяемого электромотора в спектре его скоростных характеристик.

Дискретные входы

Наличие входов обязательно. Они нужны для подачи (ввода) команд. С их помощью можно изменять параметры преобразователя и его состояние.

Соотношение цены и количества выводов

Подобрать частотник по цене можно, руководствуясь количеством функциональных выводов. От их количества зависит не только стоимость, но и удобство подключения, управления, настройки и регулировки.

Схема выводов инвертора Delta VFD-B

Перегрузки и ШУ

Шина управления (ШУ) подбирается под конкретный инвертор. Хорошим вариантом при приобретении будет ШУ, которая имеет достаточный запас колодок (разъёмов) для подключения. Это позволит в дальнейшем подключать к аппарату дополнительную аппаратуру, устройства защиты от перегрузок. Учесть все необходимые качества поможет сборка частотного преобразователя своими руками.

Как сделать преобразователь частоты собственноручно

Многие любители пробуют изготавливать преобразователи частоты своими руками.

Схема самодельного инвертора

Схема хорошо работает с мотором мощностью до 1 кВт, российского и зарубежного производства.

Для изготовления инвертора понадобятся следующие детали:

  • микросхемы: К155ЛА3, К155ИЕ4, К155ЛП5;
  • транзисторы: КТ315 (3 шт.), КТ817В (3шт.);
  • диоды: КД105Г – 3 шт.;
  • резисторы сопротивлением: 10 кОм (3 шт.), 6,2 кОм (3 шт.), 1 кОм (3 шт.), 220 Ом и переменный резистор на 1 кОм;
  • конденсаторы: 0,33 и 0,1 мкФ;
  • электролитические конденсаторы: 100 мкФ*10 В и 1000 мкФ*50 В.

Этому частотнику, своими руками изготовленному, обязательно нужен блок питания на 27 В и 5 В постоянного напряжения. Электродвигатель подключают согласно схеме.

Включение электромотора в схему

Если обращаться к современным технологиям, то создание инвертора можно выполнять на базе платформы Ардуино. Регуляторы частоты – незаменимая вещь для управления электроприводом, как в бытовых, так и в промышленных условиях.

Источник: https://amperof.ru/elektropribory/preobrazovatel-chastoty-2.html

Частотный преобразователь: назначение и принцип работы, применение для управления вращением электродвигателя

Что такое частотный преобразователь, как он работает и для чего нужен

Частотный преобразователь — электронное устройство для изменения частоты тока. Оно широко применяется для работы асинхронных электрических двигателей. Использование этого прибора позволяет продлить срок службы механизмов и увеличить экономию электроэнергии.

Достигается это тем, что преобразователь частоты (ПЧ) обеспечивает плавный пуск рабочего режима электрооборудования и его остановку.

Устройство и назначение

Частотный преобразователь представляет собой набор схем, в которых тиристоры или транзисторы функционируют в режиме электронных ключей. Основное управление этими ключами осуществляет микропроцессор, который параллельно выполняет контроль, диагностику и защиту.

Часто преобразователь называют инвертором частотником. Существует два класса оборудования этого назначения:

  1. С прямой связью.
  2. С промежуточным звеном постоянного тока.

По своим характеристикам каждый класс обладает своими преимуществами и недостатками, которые и определяют место их конкретного использования. Управляемый выпрямитель считается основным электрическим устройством в инверторах с прямой связью. Во время работы он отключает тиристоры и подключает статорную обмотку электродвигателей к сети.

Преобразование выходного напряжения происходит за счет участков входного, поэтому их частота не может быть равна или больше питания, поступающего от источника. То есть она находится в пределах от 0 до 50 Гц, что приводит к слишком малому диапазону управления частотой вращения электродвигателя.

Эти параметры не позволяют подобные конструкции использовать в современных, регулируемых по частоте приводах.

Асинхронные электродвигатели требуют сложную регулировку вращения, которую и обеспечивают преобразователи частоты, создающие на выходе высокочастотное напряжение до 800 Гц.

Принцип действия

Если объяснять принцип работы частотного преобразователя, то можно сказать, что применение этого устройства позволяет эффективно и качественно управлять работой мощных асинхронных электродвигателей.

Оборудование представляет собой частотно-регулируемый привод (ЧРП), за счет которого улучшились технические характеристики машин и механизмов. Чтобы изменить число оборотов вала двигателя, необходимо отрегулировать амплитуду напряжения и частоты. Принцип работы преобразователя частоты основан на двух способах:

  1. Скалярное управление — позволяет проводить регулировку согласно линейному закону, когда амплитуда и частота пропорционально зависят друг от друга. То есть изменение частоты влияет на амплитуду поступающего напряжения, которое действует на крутящий момент и коэффициент мощности механизма. Очень важно, чтобы момент нагрузки на валу электродвигателя оставался одинаковым, а отношение напряжения к выходной частоте оставалось неизменным.
  2. Векторная регулировка — позволяет удерживать постоянную нагрузку при любых изменениях частоты. Осуществляет более точное управление, и электропривод мягче реагирует на изменение выходной мощности. Следует учитывать, на момент вращения влияет величина тока статора, точнее, магнитное поле, которое он создает.

Промышленное напряжение поступает на выпрямитель, который сглаживает синусоиды, оставляя пульсации сигнала. Чтобы их ликвидировать и сгладить форму выходного напряжения, предусмотрены в конструкции конденсаторы с индуктивностью.

С выпрямителя сигнал поступает на вход инвертора, состоящего из шести транзисторов с диодами, которые выполняют защитные функции от напряжения обратной полярности. Иногда в схемах могут стоять тиристоры, но они действуют медленнее и с большими помехами.

Чтобы обеспечить плавное торможение вращения, в конструкцию вмонтирован регулируемый транзистор с мощным сопротивлением. По такому принципу работает частотный преобразователь для электродвигателя.

Выпускаемые модели

Во многих областях применяются асинхронные двигатели, работа которых характеризуется высокими показателями устойчивости и безопасности. Это особенно важно, так как любое устройство обладает своими индивидуальными характеристиками, зачем и нужны инверторы, которые обеспечивают оптимизацию параметров их питания. К новой линейке оборудования относятся:

  1. Emotron FDU 2.0 — преобразователь частоты последнего поколения, выпускаемый шведской компанией Emotron. Устройство работает в диапазоне от 0,75 до 1,6 кВт и рассчитано на разные группы напряжения: 3×380 B, 3×500 B, 3×690 B. В основном инвертор используется для насосного или вентиляционного оборудования.
  2. Emotron серии CDU/CDX — оборудование, предназначенное для контроля за работой лифта. Инверторы этой марки устанавливаются как на новые лифты, так и для модернизации старых конструкций. Монтируются в машинном отделении или непосредственно рядом с шахтой.
  3. «Лидер» — преобразователь частоты применяется для управления асинхронными двигателями в насосном, вентиляционном оборудовании, мельницах, дробилках, центрифугах и так далее. Устройство исключает присутствие динамических ударов во время запуска, что позволяет в 1,5—2 раза увеличить срок службы двигателя и приводного механизма.
  4. Easydrive серии Smart — инвертор, обладающий выходной мощностью от 1 Гц до 2 кГц. Отличается автоматическим определением параметров электродвигателя, когда механизм неподвижен. Устройство обладает семью программируемыми входами переключения, которые позволяют выполнять до 30 функций.

Все модели позволяют менять направление вращения вала электродвигателя, экономить основные энергетические ресурсы, снижать эксплуатационные затраты.

Правила подключения и настройки

Для полноценной и эффективной работы инвертора асинхронного электродвигателя его необходимо правильно подключить и настроить. В схему перед частотником устанавливается нужный автоматический выключатель. Если это трехфазная сеть, то выключатель должен быть рассчитан на напряжение 380 В, а сила тока соответствовать номиналу двигателя.

В случае аварийной ситуации в сети на одной фазе, отключены будут и остальные токоведущие проводники. Величина тока разрыва должна соответствовать значению в отдельной фазе электродвигателя. При использовании преобразователя частоты в однофазной сети устанавливается одиночный автоматический выключатель, по номиналу превышающий в три раза значение тока.

В обоих случаях автоматические выключатели не рекомендуется устанавливать в разрыв заземляющего или нулевого проводника, необходимо осуществлять только прямое подключение.

Чтобы подключение было выполнено правильно, идущие от преобразователя токоведущие провода должны быть подключены к соответствующим клеммам двигателя.

Статорные обмотки механизма соединяются «звездой» или «треугольником», в зависимости от того, какое напряжение поступает от инвертора. Если оно совпадает с наименьшим значением на корпусе электродвигателя, то применяется схема «треугольник». При совпадении высокого значения напряжения соединение проводится по схеме «звезда».

Далее, инвертор подключается к контроллеру и блоку управления, который обычно поставляется в комплекте с преобразователем. Все подключения проводятся по схеме, входящей в руководство по эксплуатации оборудования. После выполнения крепежных работ включается автомат и на инвертор подается питание, о чем будет сигнализировать лампочка на пульте.

Для начала работы частотника включается кнопка запуска и осуществляется поворот соответствующей рукоятки. Электродвигатель медленно начнет вращаться.

Если необходимо поменять вращение в обратную сторону, то для этого на пульте находится соответствующий тумблер.

Чтобы добиться необходимого количества оборотов двигателя, устанавливается необходимая частота напряжения или вращения, в зависимости от модели оборудования.

Источник: https://rusenergetics.ru/ustroistvo/ustrojstvo-chastotnogo-preobrazovatelya

Что такое частотный преобразователь, как он работает и для чего нужен

Что такое частотный преобразователь, как он работает и для чего нужен

Вы здесь: Так как электропривод является одним из основных способов механизации производств и бытовых задач, в ряде случаев возникает необходимость регулировки оборотов электродвигателей.

В зависимости от их вида и принципа работы используются различные технические решения. Одним из них является частотный преобразователь.

Что это такое и где применяется частотник, мы расскажем в этой статье.

Определение

По определению частотный преобразователь – это электронный силовой преобразователь для изменения частоты переменного тока. Но в зависимости от исполнения изменяется и уровень напряжения, и число фаз.

Может быть вам не совсем понятно, для чего нужен такой прибор, но мы постараемся рассказать о нём простыми словами.

Частота вращения вала синхронных и асинхронных двигателей (АД) зависит от частоты вращения магнитного потока статора и определяется по формуле:

n=(60*F/p)*(1-S),

где n – число оборотов вала АД, p – число пар полюсов, s – скольжение, f – частота переменного тока (для РФ – 50 Гц).

Простым языком, частота вращения ротора зависит от частоты и числа пар полюсов. Число пар полюсов определяется конструкцией катушек статора, а частота тока в сети постоянна. Поэтому, чтобы регулировать обороты мы можем регулировать только частоту с помощью преобразователей.

Устройство

С учетом сказанного выше сформулируем заново ответ на вопрос, что это такое:

Частотный преобразователь — это электронное устройство для изменения частоты переменного тока, следовательно, и числа оборотов ротора асинхронной (и синхронной) электрической машины.

Условное графическое обозначение согласно ГОСТ 2.737-68 вы можете видеть ниже:

Электронным он называется потому, что в основе лежит схема на полупроводниковых ключах. В зависимости от функциональных особенностей и типа управления будут видоизменяться и принципиальная электрическая схема, и алгоритм работы.

На схеме ниже вы видите как устроен частотный преобразователь:

Принцип действия преобразователя частоты лежит в следующем:

  • Сетевое напряжение подаётся на выпрямитель 1 и становится выпрямленным пульсирующим.
  • В блоке 2 сглаживаются пульсации и частично компенсируется реактивная составляющая.
  • Блок 3 – это группа силовых ключей, управляемых системой управления (4) методом широтно-импульсной модуляции (ШИМ). Такая конструкция позволяет получить на выходе двухуровневое ШИМ-регулируемое напряжение, которое после сглаживания приближается к синусоидальному виду. В дорогих моделях нашла применение трёхуровневая схема, где используется больше ключей. Она позволяет добиться более близкой к синусоидальной формы сигнала. В качестве полупроводниковых ключей могут использоваться тиристоры, полевые или IGBT-транзисторы. В последнее время наиболее востребованы и популярны последние два типа из-за эффективности, малых потерь и удобства управления.
  • С помощью ШИМ формируется нужный уровень напряжения, простыми словами – так модулируют синусоиду, поочередно включая пары ключей, формируя линейное напряжение.

Так мы кратко рассказали, как работает и из чего состоит частотный преобразователь для электродвигателя. Он используется в качестве вторичного источника электропитания и не просто управляет формой тока питающей сети, а преобразует его величину и частоту в соответствии с заданными параметрами.

Способы управления

Регулировка оборотов может осуществляться разными способами, как по способу установки требуемой частоты, так и по способу регулирования. Частотники по способу управления делят на два типа:

  1. Со скалярным управлением.
  2. С векторным управлением.

Устройства первого типа регулируют частоту по заданной функции U/F, то есть вместе с частотой изменяется и напряжение. Пример такой зависимости напряжения от частоты вы можете наблюдать ниже.

Она может отличаться и программироваться под конкретную нагрузку, например, на вентиляторах она не линейная, а напоминает ветвь параболы. Такой принцип работы поддерживает магнитный поток в зазоре между ротором и статором почти постоянным.

Особенностью скалярного управления является его распространенность и относительная простота реализации. Используется чаще всего для насосов, вентиляторов и компрессоров.

Такие частотники часто используют, если нужно поддерживать стабильное давление (или другой параметр), это могут быть погружные насосы для скважин, если рассматривать бытовое применение.

На производстве же сфера применения широка, например, регулировка давления в тех же трубопроводах и производительности автоматических систем вентиляции.

Диапазон регулирования обычно составляет 1:10, простым языком максимальная скорость от минимальной может отличаться в 10 раз.

Из-за особенностей реализации алгоритмов и схемотехники такие устройства обычно дешевле, что и является основным преимуществом.
Недостатки:

  • Не слишком точная поддержка оборотов.
  • Медленнее реакция на изменение режима.
  • Чаще всего нет возможности контролировать момент на валу.
  • С ростом скорости сверх номинальной падает момент на валу двигателя (то есть когда поднимаем частоту выше номинальных 50 Гц).

Последнее связано с тем, что напряжение на выходе зависит от частоты, при номинальной частоте напряжение равняется сетевому, а выше частотник поднимать «не умеет», на графике вы могли видеть ровную часть эпюры после 50 Гц.

Следует отметить и зависимость момента от частоты, она падает по закону 1/f, на графике ниже изображена красным, а зависимость мощности от частоты синим.
Преобразователи частоты с векторным управлением имеют другой принцип работы, здесь не просто напряжение соответствует кривой U/f.

Характеристики выходного напряжения изменяются в соответствии с сигналами от датчиков, так чтобы на валу поддерживался определенный момент. Но зачем нужен такой способ управления? Более точная и быстрая регулировка – отличительные черты частотного преобразователя с векторным управлением.

Это важно в таких механизмах, где принцип действия связан с резким изменением нагрузки и момента на исполнительном органе.

Такая нагрузка характерна для токарных и других видов станков, в том числе ЧПУ. Точность регулирования до 1,5%, диапазон регулировки – 1:100, для большей точности с датчиками скорости и пр. – 0,2% и 1:10000 соответственно.

На форумах бытует мнение, что на сегодняшний день разница в цене между векторными и скалярными частотниками меньше чем была раньше (15-35% в зависимости от производителя), а главным отличием является в большей степени прошивка, чем схемотехника. Также отметим, что большинство векторных моделей поддерживают и скалярное управление.

Преимущества:

  • большая стабильность работы и точность;
  • быстрее реакция на изменения нагрузки и высокий момент на низкой скорости;
  • шире диапазон регулирования.

Главный недостаток – стоит дороже, чем скалярные.

В обоих случаях частота может задаваться вручную или датчиками, например, датчиком давления или расходомером (если речь вести о насосах), потенциометром или энкодером.

Во всех или почти во всех преобразователях частоты есть функция плавного пуска двигателя, что позволяет легче пускать двигатели от аварийных генераторов практически без риска его перегрузки.

Количество фаз

Кроме способов реагирования частотники отличаются и количеством фаз на входе и выходе. Так различают частотные преобразователи с однофазным и трёхфазным входом.

При этом большинство трёхфазных моделей могут питаться от одной фазы, но при таком применении их мощность уменьшается до 30-50%. Это связано с допустимой токовой нагрузкой на диоды и другие силовые элементы схемы. Однофазные же модели выпускаются в диапазоне мощностей до 3 кВт.

Важно! Учтите, что при однофазном подключении с напряжением на вход 220В, будет выход 3 фазы по 220В, а не по 380В. То есть линейное на выходе будет именно 220В, если говорить кратко. В связи с чем распространенные двигатели с обмотками, рассчитанными на напряжения 380/220В нужно соединять в треугольник, а те что на 127/220В – в звезду.

В сети вы можете найти много предложений типа «частотный преобразователь 220 на 380» — это в большинстве случаев маркетинг, продавцы любые три фазы называют «380В».

Чтобы получить настоящие 380В из одной фазы нужно либо использовать однофазный трансформатор 220/380 (если вход преобразователя частоты рассчитан на такое напряжение), либо использовать специализированный частотный преобразователь с однофазным входом и 380В трёхфазным выходом.

Отдельным и более редким видом преобразователей частоты являются однофазные частотники с однофазным выходом 220. Они предназначены для регулировки однофазных двигателей с конденсаторным пуском. Примером таких устройств являются:

  • ERMAN ER-G-220-01
  • INNOVERT IDD

Схема подключения

В реальности же, чтобы получить из частотного преобразователя 380В выход 3 фазы, нужно подключить на вход 3 фазы 380В:
Подключение частотника к одной фазе аналогично, за исключением подключения питающих проводов:

Однофазный преобразователь частоты для двигателя с конденсатором (насоса или вентилятора малой мощности) подключается по такой схеме:

Как вы могли видеть на схемах, кроме питающих проводов и проводов к двигателю у частотника есть и другие клеммы, к ним подключаются датчики, кнопки выносного пульта управления, шины для подключения к компьютеру (чаще стандарта RS-485) и прочее. Это даёт возможность управления двигателем по тонким сигнальным проводам, что позволяет убрать частотный преобразователь в электрощит.

Частотники – это универсальные устройства, назначение которых не только регулировка оборотов, но и защита электродвигателя от неправильных режимов работы и электропитания, а также от перегрузки. Кроме основной функции в устройствах реализуется плавный пуск приводов, что снижает износ оборудования и нагрузки на электросеть. Принцип работы и глубина настройки параметров большинства частотных преобразователей позволяет экономить электроэнергию при управлении насосами (ранее управление осуществлялось не за счет производительности насоса, а с помощью задвижек) и другим оборудованием.

На этом мы и заканчиваем рассмотрение вопроса. Надеемся, после прочтения статья вам стало понятно, что такое частотный преобразователь и для чего он нужен. Напоследок рекомендуем просмотреть полезно видео по теме:

Наверняка вы не знаете:

  • Выбор частотного преобразователя по току, мощности и другим параметрам
  • Способы и схемы торможения электродвигателей
  • Что такое скольжение асинхронного двигателя

  • Источник: https://samelectrik.ru/chastotnyj-preobrazovatel.html

    Поделиться:
    Нет комментариев

      Добавить комментарий

      Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.