Что такое переходное контактное сопротивление?

Содержание

Что такое переходное контактное сопротивление?

Что такое переходное контактное сопротивление?
Самое хорошее контактное соединение – это то, с помощью которого переходное сопротивление образует небольшое значение на длительное время.

Соединительные контакты являются неотъемлемой частью любой электрической цепи, а так как от них зависит стабильная работа электрических приборов и проводки, то необходимо понимать, что собой представляет переходное сопротивление контактов, от чего оно зависит и какие нормы значения существуют на сегодняшний день.

Причины возникновения явления

Соединительные контакты объединяют в электрической цепи два или несколько проводника. На месте соединения образуется токопроводящее соприкосновение, в результате которого ток протекает из одной области цепи в другую.

Если контакты наложить друг на друга, не обеспечится хорошее соединение. Это объясняется тем, что поверхность соединительных элементов неровная и прикосновение не осуществляется по всей их поверхности, а только в некоторых точках. Даже если тщательно отшлифовать поверхность, на ней все равно останутся незначительные впадины и бугорки.

Некоторые книги по электрическим аппаратам предоставляют фото, где под микроскопом видна площадь соприкосновения и она намного меньше общей контактной площади.

Из-за того что контакты имеют небольшую площадь, это дает существенное переходное сопротивление для прохождения электрического тока. Переходное контактное сопротивление – это такая величина, которая возникает в момент перехода тока из одной поверхности на другую.

Для того чтобы соединить контакты используют различные способы надавливания и скрепления проводников. Нажатие – это усилие, с помощью которого поверхности взаимодействуют между собой. Способы крепления бывают:
  1. Механическое соединение. Применяют различные болты и клеммники.
  2. Соприкосновение происходит за счет упругого надавливания пружин.
  3. Спаивание, сваривание и опрессовка.

От чего зависит сопротивление?

При соприкосновении двух проводников, общая площадь и численность площадок зависит как от уровня силы нажатия, так и от прочности самого материала. То есть переходное контактное сопротивление зависит от силы нажатия: чем сила больше, тем оно будет меньше.

Только давление следует увеличивать до определенной цифры, так как при больших механических нагрузках переходное сопротивление практически не изменяется. Да и такое сильное давление может привести к деформации, в результате которой контакты могут разрушиться.

Также переходное сопротивление контактов существенно зависит и от температуры.

Когда электрическое напряжение проходит по проводникам и их поверхностям, контакты нагреваются и температура повышается, как следствие переходное сопротивление увеличивается.

Только это увеличение происходит медленнее, чем повышение удельного сопротивления материала конструкции, так как, нагреваясь, материал теряет свою твердость.

Чем сильнее нагревается устройство, тем интенсивнее идет процесс окисления, которое в свою очередь также влияет на увеличение переходного сопротивления. Так, например, медная проволока активно окисляется при температуре от 70 °С. При обычной комнатной температуре (порядка 20 °С) медь окисляется незначительно и образовывающая окислительная пленка легко разрушается при сжатии.

На картинке указывается зависимость величины от нажатия (А) и температуры (Б):

Алюминий окисляется при комнатной температуре гораздо быстрее и окислительная пленка, которая образовывается, устойчивее и имеет высокое противодействие. Исходя из этого, можно сделать вывод, что нормального соприкосновения со стабильными значениями, в ходе использования устройства, добиться тяжело. Поэтому использование проводников из алюминия в электрике опасно.

Для того чтобы получить устойчивые и долговечные соединительные контакты необходимо качественно зачистить и обработать саму поверхность кабеля. Также создать достаточное давление. Если все сделано правильно (вне зависимости от того каким методом было осуществлено соединение), то измеритель укажет стабильное значение.

Методика измерения

Измерять переходное сопротивление необходимо при установленных значениях тока и напряжения.

Как определить эту величину? Обычные приборы в виде омметра или тестера не подойдут, так как они пропускают через электрическую цепь при напряжении до 2 В токи 0,5–1 мА.

При таких небольших нагрузках большинство мощных устройств не могут предоставить паспортные данные этого явления. Определение его возможно, если собрать обычную схему измерения. Она предоставлена ниже:

Балластное противодействие (R) приостанавливает ток через контакты, а уменьшение напряжения на них при определенном токе дает возможность определить переходное сопротивление по формуле. Подбирая элементы в схему необходимо вводить при тестировании токи, которые предоставляет таблица ниже (данные указываются с учетом нормы, ПУЭ и ГОСТ):
Рабочий ток контактов реле, АТок проверки контактного сопротивления, мА
0,01 – 0,110
0,1 – 1100
>11000

Вместо предоставленной выше схемы измерения можно использовать специальные приборы, например Микроомметр Ф4104-М1 или же импортный аналог C.A.10. О том, как измерить данное значение, показывается на видео:

Важно отметить, что результаты тестирования зависят от того, насколько контакты загрязнены и какая у них температура. Поэтому проводя измерения необходимо выбирать такой ток и напряжение, которые будут соответствовать определенным условиям употребления реле в указанной схеме.

Какое должно быть переходное контактное сопротивление? Максимально допустимое значение этой величины является нормируемым и равняется 0,05 Ом.

При установлении больших нагрузок не стоит забывать про первоначальное высокое противодействие контакта. После коммутации оно существенно уменьшается под воздействием электрической очистки. Если устройство применяется в сигнальных цепях, то этой величиной можно пренебречь.

Вот и все, что хотелось рассказать вам о том, что такое переходное сопротивление контактов, какое у него допустимое значение и как выполняются измерения величины. Надеемся, информация была для вас полезной и интересной!

Будет полезно узнать:

Источник: https://samelectrik.ru/chto-takoe-perexodnoe-kontaktnoe-soprotivlenie.html

Особенности измерений переходных сопротивлений контактов коммутирующих устройств. Микроомметр МИКО-21

Что такое переходное контактное сопротивление?

  • 30 мая 2016 г. в 05:09
  • 890

Для измерения переходного сопротивления на рынке существует множество различных приборов, которые отличаются принципом действия, метрологическими характеристиками, степенью автоматизации, массогабаритными показателями и ценой. Но существуют и определенные требования, нормы, рекоменадации и особенности измерения переходных сопротивлений контактов, учитывая которые можно не ошибиться выбором необходимого прибора.

Нелинейный характер переходного сопротивления

Окисная пленка и неметаллические включения обуславливают повышенное переходное сопротивление (далее Rпер.) контактов.

Его величина уменьшается при увеличении измерительного тока, поэтому наиболее достоверные измерения будут при токах, близких к рабочим токам выключателей. А при малом измерительном токе микроомметра значение Rпер.

может оказаться выше допустимого паспортного значения и потребуется не нужная разборка выключателя для зачистки контактов.

Поэтому, если в паспорте выключателя не указано значение тока, при котором следует измерять сопротивление его контактов, то целесообразно следовать ГОСТ 17441-84 (п. 2.6.2), в котором рекомендуемая сила длительно протекающего измерительного тока не должна превышать 0,3 номинального тока контактного соединения.

Влияние встроенного трансформатора тока (ТТ) на измерение Rпер баковых выключателей

При подаче измерительного тока через полюс бакового выключателя во вторичной обмотке ТТ возникает переходный процесс, который проявляется в индуцировании в первичную цепь импульса напряжения, постепенно спадающего до нуля. Это изменяющееся напряжение суммируется падением напряжения на Rпер.

, созданного измерительным током, и воспринимается микроомметром как дополнительное (внесение из вторичной обмотки ТТ) сопротивление, включенное последовательно Rпер. и изменяющееся во времени. Время затухания переходного процесса спада внесенного сопротивления зависит от многих факторов и может меняться от 1,0 до 60 с.

Переходный процесс, в цепи содержащей ТТ, возникает не только при включении тока, но и при его выключении.

Сложность измерения сопротивлений в различных соединениях

В силовой электрической цепи полюса высоковольтного выключателя кроме переходного сопротивления контактов присутствует и сопротивление различных соединений.

Чаще всего приборы комплектуются только измерительным кабелем зажимом типа «крокодил», и при неправильном его подключении к контактам между аппаратным зажимом и шпилькой ввода — переходное сопротивление может иметь завышенныо значения, прибор покажет значение выше паспортной величины, и будет выполнен совершенно не нужный ремонт контактов выключателя.

Если же снимать потенциальные сигналы не аппаратных зажимов, а со шпилек, то в измеряемый участок цепи окажется включенным только переходное сопротивление контактов выключателя. Но закрепить «крокодилы» непосредственно за шпильки часто не удается из-за отсутствия доступа к ним, поэтому прибор должен комплектоваться специальными выносными потенциальными контактами.

Электромагнитная обстановка на энергетических объектах

Игнорирование перечисленных выше особенностей может приводить к тому, что приборы, показывающие в условиях офиса отличные метрологические характеристики оказываются малопригодными для применения в условиях электрической подстанции.

Так, например, на рынке средств измерений электрического сопротивления в диапазоне от 1µΩ и более существуют микроомметры у которых измерительный ток представляет собой выпрямленный ток 50Гц.

В связи этим не смотря на его большое значение (свыше 100А), данный прибор практически не пригоден для измерения переходного сопротивления баковых выключателей.

другой стороны существуют микроомметры достаточно большим коэффициентом стабилизации силы тока, но при внесении этого прибора в сколь-нибудь существенное магнитное или электрическое поле относительная погрешность измерений может достигать сотен процентов.

Эти и другие особенности измерений электрического сопротивления в условиях подстанции известны компании «СКБ ЭП» свыше 15 лет, момента выпуска ее первого микроомметра МИКО-1.

Летом 2015 года «СКБ ЭП» запустила в производство первую партию нового микроомметра МИКО-21 — это мобильный и хорошо защищенный (композитный кейс) прецизионный прибор (погрешность не более ± 0,05%), но по цене общепромышленного микроомметра.

Он полностью автономен и, в отличии от микроометров предыдущего поколения, имеет новый тип аккумулятора, что позволяет выполнить намного большее количества измерений от его полного заряда до полного разряда (продолжительность непрерывной работы в нормальных условиях, не менее 8 часов).

Осенью того же года компания провела полномасштабные испытания установочной партии в условиях реальной эксплуатации, на подстанциях Иркутскэнерго. Часть испытаний проходила на «Участке высоковольтного электрооборудования Иркутской ГЭС» при обследовании бакового выключателя фирмы ALSTOM HGF-1012 на 110кВ.

Элегазовый баковый выключатель ALSTOM HGF-1012, 110кВ

Элегазовые баковые выключатели, отличаются наличием встроенных трансформаторов тока, что затрудняет точное измерение переходных сопротивлений контактной системы выключателя.

Для решения данной задачи, специалистами «СКБ ЭП» в новом микроомметре МИКО-21 были реализованы дополнительные режимы работы, при использовании которых учитывается индуктивность трансформаторов тока.

Приведем результаты измерений переходных сопротивлений контактов выключателя сведенных в таблицу:

Тип выключателя ALSTOM HGF-1012, 110кВ
Режим измерения Тестовый ток Фаза А Фаза В Фаза С
«Режим 1» 10 А 269,94 мкОм 279,51 мкОм 276,54 мкОм
«Режим 1» 50 А 269,73 мкОм 294,69 мкОм 300,61 мкОм
«Режим 1» 100 А 269,67 мкОм 299,73 мкОм 310,65 мкОм
«Режим 1» 200 А 269,56 мкОм 299,89 мкОм 311,01 мкОм
«Режим 2 с ТТ»200 А91,760 мкОм93,403 мкОм98,941 мкОм
«Режим 2 с ТТ»100 А90,808 мкОм93,306 мкОм88,133 мкОм
«Режим 3 с ТТ»200 А90,781 мкОм93,348 мкОм88,151 мкОм

Примечание: «Режим 1» — измерения без встроенных трансформаторов тока и для любых разборных и неразборных соединений; «Режим 2 с ТТ» — измерения со встроенными трансформаторами тока использованием энергосбережения; «Режим 3 с ТТ» — измерения со встроенными трансформаторами тока, но при максимальной длительности измерительного тока и без использования алгоритмов энергосбережения.

Как видно из данного примера, показания обычного режима микроомметра отличаются от показаний в специальных режимах измерения практически в три раза, при этом измерения в обычном режиме выходят из нормы сопротивления выключателя, что говорит о неэффективности измерения без специальной настройки к данному типу оборудования.

Испытания микроомметра МИКО-21

Не менее важной функцией МИКО-21, является встроенный архив паспортных значений высоковольтных выключателей указанием максимально и/или минимально допустимого значения переходного сопротивления контактов, а также паспорта на отбраковываемые резисторы указанием допустимых значений верхнего и нижнего порогов сопротивления. Наличие архива паспортных значений электрических сопротивлений позволяет прибору автоматически определять и сигнализировать о выходе результата измерений за допустимые границы.

В микроомметре запрограммировано 4 способа запуска процесса измерения:

  • «Однократный» — запуск происходит по нажатию кнопки «Старт»;
  • «По замыканию цепи» — запуск на измерение происходит после возникновения электрического контакта между измеряемой цепью и токовыми и потенциальными контактами измерительного кабеля;
  • «Периодический» — запуск измерения происходит через заранее заданные интервалы времени. Режим может быть использован для проведения отбраковки изделий;
  • «Периодическая цепь» — предназначен для автоматического периодического запуска измерения по факту замыкания измерительной цепи.

МИКО-21 имеет цветной графический дисплей высокой яркости, а управление прибором может осуществляться (по выбору пользователя) либо через пленочную клавиатуру, либо через сенсорный экран дисплея. Кроме того, прибор может работать под управлением персонального компьютера, что очень удобно при автоматизации измерений или для дополнительной обработки полученных результатов.

Результаты измерения сопротивления на экране МИКО-21

Комплектация прибора предусматривает измерительные кабели как зажимами «крокодил» или быстро устанавливаемыми струбцинами, оснащенными качественными контактами из бериллиевой бронзы, так и зажимами типа «игольчатые подпружиненные сдвоенные щупы».

Последние позволяют оперативно проводить множество измерений на шинных токопроводах, соединениях в трубопроводах, металлических обшивках летательных аппаратов и т.п.

Для случая сильно загрязненных или окрашенных поверхностей имеется вариант поворачивающимися при нажатии щупами.

При измерениях на подстанции прибор устанавливается либо возле выключателя, либо в люльке подъемника. Для второго случая имеются облегченные кабели на все классы напряжений. Так, для выключателей на 750кВ суммарная длина двух кабелей не превышает 10 м, а масса менее 4 кг при токе 200А.

Высокая точность измерения сопротивления и разнообразные способы запуска прибора позволяет использовать микроомметр не только для измерения переходного сопротивления главных контактов высоковольтного выключателя и различных контактных соединений, но и в исследовательских лабораториях и цехах заводов для высокоточных измерений сопротивлений. В частности прибор может быть использован для:

  • отбраковки резисторов (автоматическим сравнением результатов измерений заранее заданным допуском),
  • измерений удельного сопротивления проводников,
  • проверки правильности сечения провода,
  • определения длины и массы бухты провода без разматывания и взвешивания,
  • определения температурного коэффициента сопротивления (ТКС) стабильных резисторов, шунтов и любых металлов.

Если вас заинтересовал прибор и вы хотите получить больше информации о микроомметре МИКО-21, обращайтесь к менеджерам по тел. +7 (3952) 719-148 или по почте skb@skbpribor.ru

Источник: ©ООО «СКБ ЭП»

Источник: https://www.elec.ru/articles/osobennosti-izmerenij-perekhodnykh-soprotivlenij-k/

Переходное сопротивление контактов: причины, нормы, методика измерения

Что такое переходное контактное сопротивление?

В электротехнике очень часто возникает необходимость коммутации электрических цепей. Каждое электромеханическое коммутирующее устройство имеет, как минимум, одну пару соединительных контактов. Вопреки ожиданиям, нередко можно наблюдать, что контакты нагреваются. Виной тому является переходное сопротивление контактов, от которого невозможно полностью избавиться.

Контактное пятно образуется в результате любого соприкосновения проводников. В точке соединения проводов всегда возникает сопротивление, которое превышает величину удельных сопротивлений материалов проводника. Существует несколько причин такого явления, о которых речь пойдёт в данной статье. А для начала выясним, что подразумевают под термином переходного сопротивления контактов.

Что это такое?

Сопротивление, возникающее в зоне соприкосновения контактных поверхностей, при преодолении током точек касания, носит название  переходного сопротивления контактов.

Другими словами – это скачкообразное увеличение активного  сопротивления в результате прохождения тока через контактное пятно.

Математически такое явления можно выразить как отношение падения напряжения на контактах к протекающему через них току: ΔU/I

Как видно из формулы данная величина обратно пропорциональна силе контактного нажатия: Rn = ε/F, где ε – коэффициент, зависящий от физических свойств материала и чистоты обработки поверхности. Эту зависимость можно продемонстрировать на графике (рис. 1).

Рис. 1. График зависимости от приложенной силы нажатия

Нагревание контактных поверхностей – одна из причин быстрого их износа. Поэтому наиболее качественным соединением считается такое, для которого сопротивление контактного перехода является самым низким. В идеале оно должно равняться нулю. Но в силу ряда причин достичь такого значения на практике невозможно.

Причины возникновения

Для сплошного проводника справедлива формула: R = ρ * ( l / S ), где ρ – удельное сопротивление, l – длина, S – сечение проводника. Казалось бы, решение очень простое – надо увеличить площадь контактных площадок в конструкции электрического аппарата.

К сожалению, такое усовершенствование не решает задачи кардинально. И дело даже не в том, что применять закон Ома к плоскостным контактам следует с учётом площади прикосновения поверхностей.

Оказывается, что увеличение контактной площадки не сильно увеличивает площадь контактного пятна.

Если посмотреть под микроскопом на поверхность плоской контактной площадки, то можно заметить неровности (рис. 2). Касание контактов происходит лишь в некоторых точках. Даже тщательная шлифовка мало помогает. Дело в том, что в результате замыкания и размыкания контактов образуется искра (электрическая дуга), которая увеличивает неровности контактных поверхностей.

Рис. 2. Структура плоских контактных площадок

Обратите внимание на то, как увеличивается контактное пятно под действием силы нажатия (рисунок справа). Это объясняет причину зависимости сопротивления контактного перехода от нажатия, (график такой зависимости представлен на рисунке 1).

От чего зависит переходное сопротивление контактов?

Мы выяснили, что от площадей соприкасаемых поверхностей мало что зависит.  На нагрев участка механического соединения влияют и другие явления. Например, окисление меди приводит к повышению температуры нагрева на скрутках соединительных проводов. Аналогичный процесс происходит также при соединении алюминиевых проводников.

В результате окисления проводников на их поверхностях образуется тонкая оксидная плёнка. С одной стороны, наличия пленок препятствует проникновению кислорода вглубь металла, предотвращая дальнейшее его разрушение, но с другой стороны они являются ещё одной причиной роста переходных сопротивлений.

Когда медь окисляется, то на поверхности контактной площадки образуется устойчивая плёнка. А это всегда приводит к увеличению сопротивляемости перехода. Устранить дефект можно путём протирания контактов спиртом. Регулярная процедура чистки помогает содержать коммутационные устройства в актуальном состоянии.

Алюминиевый контакт лучше поддаётся влиянию контактного нажатия, благодаря пластичности этого металла. С целью увеличения силы нажатия применяются болты, пружинные зажимы и различные клеммники.

Медные соединительные провода часто припаивают. В местах спайки переходное сопротивление минимальное.

Подводя итог, можем констатировать:

  1. Простое соприкосновение контактных поверхностей не обеспечивает надёжного контакта, поскольку соединение происходит не по всей поверхности, а лишь в немногих точках.
  2. на преодоление контактного перехода почти не влияют размеры и формы контактных площадок (см. график на рис. 3).
  3. Контактное нажатие существенно влияет на структуру перехода. Однако, это влияние проявляется только при сравнительно незначительных усилиях. После некоторого значения приложенной силы, вызвавшей смятие, сопротивляемость току стабилизируется.
  4. Со временем на медных и алюминиевых контактах образуется защитная плёнка, увеличивающая сопротивление. Для борьбы с этим явлением используют сплавы, покрывают поверхности серебром. Окисление активизируется при повышении температуры (для меди свыше 70 ºC). Температура в свою очередь зависит от токов нагрузки.
  5. Очень интенсивно на открытом воздухе окисляется алюминий. Оксидная плёнка алюминия обладает довольно большим удельным сопротивлением.

Рис. 3. Переходное сопротивление стали

Чтобы добиться нужного результата, следует учитывать комплексное влияние  всех вышеперечисленных факторов. Правилами устройств электроустановок строго регламентируется сопротивление контактной группы. Нарушение этих требований может привести к авариям.

Нормы по ПУЭ 7

Правилами предусмотрено соблюдение важных параметров, включая допустимые значения для контактных переходов. Измерения сопротивления постоянному току проводятся при испытаниях разъединителей и отделителей. Нормы по ПУЭ 7 требуют, чтобы показания величин для отделителей и разъединителей, предназначенных для работы под напряжением от 110 кВ, соответствовали данным заводов-изготовителей.

По правилам ПУЭ 7 для разъединителей типа РОН3, рассчитанных на номинальное напряжение 400 – 500 кВ (при номинальном токе 2000 А) переходное сопротивление не должно превышать 200 мкОм. Для ЛРН (110 – 220 кВ/ 600 А сопротивление контактов должно составлять 220 мкОм.

Требования для остальных типов отделителей, применяемые в сетях 110 – 500 кВ:

  • Номинальному току 600 А соответствует сопротивление 175 мкОм;
  • 1000 А – 120 мкОм;
  • 1500 – 2000 А – наибольшее допустимое сопротивление 50 мкОм.

Измерения выполняются между точкой «контактный ввод» и на клемме «контактный вывод».

Что такое переходное контактное сопротивление и почему так важно, чтобы оно было минимальным

Что такое переходное контактное сопротивление?

Все мы с вами прекрасно знаем, что согласно ПУЭ существует несколько разрешенных способов соединения проводников, а именно: опрессовка, сварка, пайка или использование сжимов.

И, по большому счету, неважно, какой именно вид соединения будет выбран в том или ином конкретном случае. Самое главное, чтобы было обеспечено соединение с минимальным переходным сопротивлением.

А почему это так важно я и расскажу вам в этой статье.

yandex.ru

Что такое переходное контактное сопротивление

Итак, давайте разберемся, что же такое переходное контактное сопротивление, а для этого надо начать с контактного соединения.

Контактное соединение – это конструктивное устройство, в котором создается механическое и вследствие этого электрическое соединение двух и более проводников входящих в электрическую цепь.

В месте контакта двух проводников создается электрический контакт – токопроводящее соединение, в результате которого ток протекает из одного проводника в другой.

Причем если мы с вами просто приложим два проводника друг к другу, то это не обеспечит надежный контакт. Так как реальный контакт проводников осуществляется не по всей поверхности прислоненных пластин, а лишь в немногочисленных точках.

yandex.ru

А все из-за того, что на проводнике присутствуют микроскопические ямы и бугры и даже тщательная обработка (шлифовка) не устранит такие неровности.

Получается, что из-за столь незначительного контакта поверхностей в данном месте будет довольно большое сопротивление протеканию тока.

Сопротивление в месте перехода тока из одного проводника в другой и получило название “Переходное сопротивление контактов.

Определение. Переходное контактное сопротивление – это активное сопротивление в месте перехода тока из одной детали в другую.

Величину такого сопротивления можно найти по формуле, которая была получена экспериментальным путем:

yandex.ru

Как вы, наверное, заметили, если внимательно изучить формулу, то становится очевидно, что сопротивление контакта не имеет прямой зависимости от размера контактных поверхностей. И в этом случае для переходного сопротивления гораздо важнее сила давления (контактного нажатия).

Теперь давайте разберемся, что такое контактное нажатие

Контактным нажатием называется усилие, с которым оказывается давление одной контактной поверхности на другую.

Число контактных точек начинает увеличиваться по мере того, как возрастает сила нажатия. Причем даже при малом давлении процесс деформации вершин и впадин в значительной степени увеличивает число точек соприкосновения.

И именно по этой причине для создания надежного контакта используют разнообразные способы сжатия и скрепления проводников:

1. Механическое соединение с помощью болтовых соединений.

2. Использование пружин для упругого нажатия (Wago клеммники).

3. Сварка, пайка и опрессовка.

Получается, что переходное контактное сопротивление тем меньше, чем больше сила нажатия, а, следовательно, больше реальная площадь соприкосновения проводников.

yandex.ruПримечание. На первый взгляд кажется, что выше представленное утверждение не согласуется с экспериментально полученной формулой, но на самом деле все прекрасно согласуется. Ведь по формуле мы с вами высчитываем сопротивление в конкретной точке, но с ростом давления количество точек соприкосновения увеличивается, создавая в месте контакта все больше условно параллельных сопротивлений. А, как известно, при параллельном соединении суммарное сопротивление уменьшается.

Но при этом следует учесть, что увеличивать давление (тем самым снижая сопротивление) можно только до определенного уровня. Нельзя допускать пластических деформаций соединяемых проводников, ведь это может привести к их разрушению.

Также данное сопротивление зависит от температуры, ведь при нагреве проводника возрастает переходное контактное сопротивление. Еще следует учесть, что при росте температуры существенно быстрее изменяется удельное сопротивление материала, в результате чего переходное сопротивление наоборот уменьшается.

Получается, что небольшой нагрев не столь страшен, главное чтобы температура не превышала определенных рамок.

Изменение контактного сопротивления со временем

Как говорят классики: “Ничто не вечно под луной.” Так дела обстоят и с надежно выполненным контактом. Минимальное переходное сопротивление у него будет лишь в самом начале, а во время эксплуатации оно может существенно измениться и вот почему.

Сильное влияние на такое сопротивление оказывает температура. Так даже при температуре в 20 градусов по Цельсию медь окисляется, в результате чего на поверхности жилы формируется оксидная пленка, которую достаточно легко разрушить.

А вот если температура провода в результате сильно возросшей нагрузки или плохого контакта возрастет до +70 градусов и более, процесс формирования оксидной пленки ускорится многократно, что приведет к еще большему увеличению сопротивления, а, следовательно, увеличит нагрев, что может привести к плачевным последствиям.

yandex.ru

Но еще хуже дела обстоят с алюминием, ведь это очень активный металл и процесс формирования пленки из оксидов идет гораздо интенсивней. А сформированная пленка (в отличие от медной) очень устойчива и тугоплавка. Сопротивление окисла алюминия равно 1012 Ом*см.

Отсюда следует вывод, что использовать алюминий для выполнения, например, домашней проводки, нежелательно. Ведь таким образом создать надежное контактное соединение со стабильно низким контактным сопротивлением будет достаточно сложно.

И, подводя итог всего вышенаписанного, хочу сказать, что какой бы вы не выбрали способ соединения проводов, самое главное, чтобы контакт был выполнен строго по всем правилам и требованиям, и тогда переходное контактное сопротивление будет минимально, и соединение при должном периодическом обслуживании (если это не сварка тут обслуживание не нужно) прослужит вам очень долго и безаварийно.

Источник: https://zen.yandex.ru/media/id/5aef12c13dceb76be76f1bb1/5cf16cb5db8c7100afb2ffc5

Гост 24606.3-82 изделия коммутационные, установочные и соединители электрические. методы измерения сопротивления контакта и динамической и статической нестабильности переходного сопротивления контакта (с изменениями n 1, 2), гост от 03 августа 1982 года №24606.3-82

Что такое переходное контактное сопротивление?

ГОСТ 24606.3-82

Группа Э29

MКC 31.220
ОКП 63 8200

Дата введения 1984-01-01

Постановлением Государственного комитета СССР по стандартам от 3 августа 1982 г. N 3041 дата введения установлена 01.01.

84

Ограничение срока действия снято по протоколу N 2-92 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 2-93)

ИЗДАНИЕ (декабрь 2003 г.) с Изменениями N 1, 2, утвержденными в июле 1984 г., мае 1988 г. (ИУС 11-84, 8-88).

Настоящий стандарт распространяется на коммутационные, установочные изделия и электрические соединители и устанавливает методы измерения сопротивления контакта:

1 – непосредственного отсчета;

2 – вольтметра-амперметра

и метод измерения динамической и статической нестабильности переходного сопротивления контакта.

Стандарт не распространяется на коммутационные изделия, применяемые в авиационной технике.

Общие требования при измерении и требования безопасности – по ГОСТ 24606.0-81.

(Измененная редакция, Изм. N 2).

1. МЕТОД НЕПОСРЕДСТВЕННОГО ОТСЧЕТА

1.1. Аппаратура

1.1.1. Сопротивление контакта измеряют приборами с непосредственным отсчетом с погрешностью в пределах ±10%.

1.1.2. Приборы для измерения сопротивления контакта следует выбирать в соответствии с режимами измерения, установленными в стандартах или технических условиях на изделия конкретных типов.

Перечень приборов, используемых при измерении, приведен в приложении 1.

1.2. Подготовка и проведение измерений

1.2.

1 Измеряют сопротивление контакта:

– кнопок, переключателей, микропереключателей и тумблеров для каждой пары контакт-деталей между выводами в точках, указанных в стандартах или технических условиях на изделия конкретных типов;

– ламповых панелей между каждым гнездом и сочлененным с ним измерительным калибром;

– держателей плавких вставок между контакт-деталью и сочлененным с ней измерительным калибром;

– электрических соединителей для каждой сочлененной пары контакт-деталей в точках, указанных в стандартах или технических условиях на изделия конкретных типов.

1.2.

2. Рабочие поверхности контакт-деталей перед измерением не допускается зачищать или обрабатывать каким-либо способом.

1.2.

3. Контакт-детали изделия замыкают (сочленяют) и подключают к выводам прибора (п.1.2.1).

Во время измерения не допускаются размыкание контактов и перемещение присоединительных проводов.

(Измененная редакция, Изм. N 1).

2. МЕТОД ВОЛЬТМЕТРА-АМПЕРМЕТРА

2.1. Принцип и режим измерения

2.1.1. Принцип измерения заключается в определении значения падения напряжения на контактном переходе при заданном значении тока.

2.1.2. Измерение сопротивления контакта проводят при постоянном или переменном токе частотой до 2000 Гц в одном из режимов.

Один режим предназначен для измерения сопротивления контакта изделий, нижние уровни рабочих напряжений которых должны быть не более 20 мВ.

ЭДС электрической цепи устанавливают не более 20 мВ постоянного или переменного (амплитудного значения) тока. Значение силы тока должно быть не более 100 мА или соответствовать указанному в стандартах или технических условиях на изделия конкретных типов.

Другой режим предназначен для измерения сопротивления контакта, нижние уровни рабочих напряжений которых более 20 мВ.

ЭДС электрической цепи устанавливают 1-60 В постоянного или переменного (амплитудного значения) тока.

Значение силы тока должно соответствовать указанному в стандартах или технических условиях на изделия конкретных типов.

(Измененная редакция, Изм. N 1).

2.2. Аппаратура

2.2.1. Измерение следует проводить на установке, структурная схема которой приведена на черт.1.

– источник тока; – выключатель; – переменный резистор; – амперметр;
, – вольтметры; – сопротивление измеряемого контакта

Черт.1

2.2.2. Погрешность амперметра – в пределах ±3%.

2.2.3. Погрешность вольтметра – в пределах ±3%. Полное входное сопротивление вольтметра должно быть больше внутреннего сопротивления источника тока не менее чем на один порядок.

2.2.4. Погрешность вольтметра – в пределах ±3%. Полное входное сопротивление должно быть больше значения измеряемого сопротивления контакта не менее чем на два порядка.

2.2.5. Источник тока должен обеспечивать заданный ток.

2.2.6. Значение сопротивления переменного резистора должно быть больше значения сопротивления контакта не менее чем на два порядка.

2.2.7. Сопротивление контакта измеряют четырехпроводным подключением (токового и потенциального) к выводам испытуемого изделия.

Площадь сечения подводящих токовых проводников должна соответствовать допустимой плотности тока (не более 5 А/мм). Площадь сечения потенциальных проводников не устанавливают, но она должна обеспечивать достаточную механическую прочность.

2.3. Подготовка и проведение измерений

2.3.1. Подготовка к измерениям – по пп.1.2.1 и 1.2.2.

2.3.2. Выключатель переводят в разомкнутое положение и устанавливают на переменном резисторе максимальное значение сопротивления.

2.3.3. Контакт-детали изделия замыкают (сочленяют) и подключают к установке.

2.3.4. По вольтметру устанавливают напряжение согласно п.2.1.2.

2.3.5. Выключатель замыкают.

2.3.6. Переменным резистором устанавливают по амперметру ток согласно п.2.1.2 и измеряют падение напряжения на контактном переходе.

2.4. Обработка результатов

2.4.1. Сопротивление контакта в омах рассчитывают по формуле

,

где – напряжение на вольтметре , В;

– ток, протекающий через амперметр , А.

(Измененная редакция, Изм. N 1).

2.5. Показатели точности измерений

2.5.1. Погрешность измерения сопротивления контакта – в пределах ±10% с вероятностью 0,95.

2.5.2. Погрешность измерения рассчитывают по формуле, приведенной в приложении 2.

3. МЕТОД ИЗМЕРЕНИЯ СТАТИЧЕСКОЙ НЕСТАБИЛЬНОСТИ ПЕРЕХОДНОГО СОПРОТИВЛЕНИЯ КОНТАКТА

3.1 Принцип измерения

3.1.1. Принцип измерения заключается в определении среднего квадратического отклонения переходного сопротивления контакта по результатам многократных измерений.

3.2. Аппаратура

3.2.1. Аппаратура – по пп.1.1 и 2.2.

3.3. Подготовка и проведение измерений

3.3.1. Сопротивление контакта измеряют по п.1.2.

3.3.2. Сопротивление контакта измеряют любым из методов, установленных в разд.1 и 2.

Режим и число измерений, необходимых для определения статической нестабильности переходного сопротивления контакта, – по стандартам или техническим условиям на изделия конкретных типов.

3.3.3. Перед каждым измерением контакт-детали размыкают (расчленяют) и вновь замыкают (сочленяют) без электрической нагрузки.

3.4. Обработка результатов

3.4.1. По результатам измерений рассчитывают среднее арифметическое значение сопротивления контакта в омах по формуле

,

где – сопротивление, полученное в -м измерении, Ом;

– число измерений.

3.4.2. Статическую нестабильность переходного сопротивления контакта в омах рассчитывают по формуле

.

3.5. Показатели точности измерений

3.5.1. Погрешность измерения статической нестабильности переходного сопротивления контакта – в пределах ±10% с вероятностью 0,95.

4. МЕТОД ИЗМЕРЕНИЯ ДИНАМИЧЕСКОЙ НЕСТАБИЛЬНОСТИ ПЕРЕХОДНОГО СОПРОТИВЛЕНИЯ КОНТАКТА

4.1. Принцип и режим измерения

4.1.1. Принцип измерения заключается в определении значения максимального изменения падения напряжения на контактном переходе при испытаниях в динамическом режиме. Вид испытаний должен соответствовать указанному в стандартах или технических условиях на изделия конкретных типов по ГОСТ 20.57.406-81.

(Измененная редакция, Изм. N 1).

4.1.2. Измерение проводят при постоянном токе; ЭДС электрической цепи должна быть не более 20 мВ и ток не более 50 мА или в режиме, указанном в стандартах или технических условиях на изделия конкретных типов.

4.2. Аппаратура

4.2.1. Измерение проводят на установке, электрическая схема которой приведена на черт.2.

– источник тока; , – переключатели; – амперметр;
– переменный резистор; – калибровочный резистор; – усилитель; – осциллограф;
, , , … , – измеряемые контакты: 1, 2, 3, 4, … , – положения измеряемых контактов

Черт.2

(Измененная редакция, Изм. N 1).

4.2.2. Погрешность амперметра – в пределах ±1%.

4.2.3. Устройство для измерения динамической нестабильности переходного сопротивления контакта должно иметь прямолинейную частотную характеристику в диапазоне частот от 400 Гц до 1 МГц с неравномерностью ±3 дБ и обладать чувствительностью на частотах до 1 МГц:

50 мкВ/см – при измерении сопротивления до 5 мОм;

500 мкВ/см – при измерении сопротивления свыше 5 до 30 мОм;

1,0 мВ/см – при измерении сопротивления свыше 30 мОм.

(Измененная редакция, Изм. N 1).

4.2.4. (Исключен, Изм. N 1).

4.2.5. Сопротивление калибровочного резистора должно быть равно сопротивлению контакта, установленному в стандартах или технических условиях на изделия конкретных типов с допускаемым отклонением в пределах ±1%.

4.2.6. Кабель, соединяющий испытуемые изделия с установкой, должен быть длиной не более 10 м и иметь экранирующую заземленную оплетку.

4.3. Подготовка и проведение измерений

4.3.1. Изделия крепят на устройстве, создающем динамическое воздействие. Способ крепления – по стандартам или техническим условиям на изделия конкретных типов.

(Измененная редакция, Изм. N 1).

4.3.2. Перед измерением динамической нестабильности переходного сопротивления контакта проводят калибровку осциллографа. Переключатель устанавливают в положение 1 и проверяют по осциллографу зависимость размаха сигнала от значения тока в трех-пяти точках. Нелинейность этой зависимости должна быть в пределах ±10%.

4.3.3. (Исключен, Изм. N 1).

4.3.4. Значение воздействия наводок на переходное сопротивление контакта определяют при разомкнутом переключателе и вычитают из значения общего сигнала, поступающего на осциллограф при измерении падения напряжения на контактном переходе при испытаниях в динамическом режиме.

(Измененная редакция, Изм. N 1).

4.3.5. Переключатель переводят из положения 7 в положения 2, 3, 4, …, (см. черт.2), поочередно измеряя на осциллографе падение напряжения на контактном переходе.

4.3.6. Измерение нестабильности сопротивления контактов проводят в течение времени, установленного в стандартах или технических условиях на изделия конкретных типов.
(Введен дополнительно, Изм. N 1).

4.4. Обработка результатов

4.4.1. Динамическую нестабильность в процентах рассчитывают по формуле

,

где – максимальное значение падения напряжения, измеренное в динамическом режиме, В;

– минимальное значение падения напряжения, измеренное в динамическом режиме, В;

– значение падения напряжения, измеренное на калибровочном резисторе , В.

(Измененная редакция, Изм. N 1).

4.5. Показатели точности измерений

4.5.1. Погрешность измерения динамической нестабильности – в пределах ±20% с вероятностью 0,95.

(Измененная редакция, Изм. N 1).

4.5.2. Расчет погрешности приведен в приложении 3.

Приложение 1 (справочное). перечень приборов, используемых для измерения сопротивления контакта и динамической и статической нестабильности сопротивления контакта

ПРИЛОЖЕНИЕ 1
Справочное

Измерители сопротивления Е6-18/1, 13КС-2

– при методе непосредственного отсчета

Вольтметры В3-49, В3-60, универсальные цифровыевольтметры В7-28, В7-38, амперметры Э 390, Э 524

– при методе вольтметра-амперметра

Измерители сопротивления Е6-18/1-13КС-2, вольтметры В3-49, В3-60, амперметры Э 390, Э 524

– при методе измерения статической нестабильности переходного сопротивления контакта

Устройство для измерения динамической нестабильности переходного сопротивления контакта (осциллограф С8-13 со сменным блоком Я40-1102), усилитель универсальный У7-5

– при методе измерения динамической нестабильности переходного сопротивления контакта

ПРИЛОЖЕНИЕ 1. (Измененная редакция, Изм. N 2).

Приложение 2 (справочное). расчет погрешности измерения сопротивления контакта

ПРИЛОЖЕНИЕ 2
Справочное

,

где – погрешность вольтметра , %;

– погрешность амперметра , %.

Приложение 3 (справочное). расчет погрешности измерения динамической нестабильности переходного сопротивления контакта

ПРИЛОЖЕНИЕ 3
Справочное

,

где – коэффициент, зависящий от закона распределения результирующей погрешности измерения, равный 2,0 для трапецеидального закона распределения погрешности при доверительной вероятности 0,95;

, , – коэффициенты влияния значений , и на измеряемый параметр;

, , – среднее квадратическое отклонение погрешности измерения , и погрешности установления и поддержания .

;

;

.

Поскольку и измеряют одним прибором, то

;

,

где – погрешность осциллографа;

– коэффициент, зависящий от закона распределения.

При равновероятном законе распределения составляющих погрешностей и при предельной погрешности осциллографа 1,73.

Таким образом .

ПРИЛОЖЕНИЕ 3. (Измененная редакция, Изм. N 1).

Электронный текст документаподготовлен ЗАО “Кодекс” и сверен по:официальное издание

М.

: ИПК Издательство стандартов, 2004

Источник: http://docs.cntd.ru/document/464634491

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.