Калькулятор для расчета делителя напряжения

Содержание

Конвертер величин

Калькулятор для расчета делителя напряжения

Постоянная времени определяется по формуле

где τ — постоянная времени в секундах, R — сопротивление в омах и C — емкость в фарадах.

Постоянная времени RC-цепи определяется как время, которое требуется, чтобы конденсатор зарядился до 63,2% его максимально возможного заряда при условии, что начальный заряд нулевой.

Отметим, что конденсатор зарядится до 63,2% за время τ и почти полностью (до 99,3%) зарядится за время 5τ.

Энергия E, которую хранит полностью заряженный до напряжения V конденсатор, при условии, что время заряда T ≫ τ, определяется формулой

где C — емкость в фарадах и V — напряжение в вольтах.

Максимальный ток I определяется по закону Ома:

Максимальный заряд Q определяется по формуле

где C — емкость в фарадах и V — напряжение в вольтах.

Фильтрующие электролитические конденсаторы на системной плате компьютера

Применение

Частотный разделитель ADSL — это фильтр нижних частот и три соединителя в корпусе

Конденсаторы часто используются в различных электрических и электронных устройствах и системах. Вероятно, вы не найдете ни одно электронное устройство, в котором не содержится хотя бы один конденсатор.

Конденсаторы используются для хранения энергии, обеспечения импульсов энергии, для фильтрации питающего напряжения, для коррекции коэффициента мощности, для развязки по постоянному току, в электронных частотных фильтрах, для фильтрации шумов, для запуска электродвигателей, для хранения информации, для настройки колебательных контуров, в различных датчиках, в емкостных экранах мобильных телефонов… Этот список можно продолжать до бесконечности.

Резистивно-емкостные (RC) цепи обычно используются в качестве простых фильтров нижних и верхних частот, а также простейших интегрирующих и дифференцирующих цепей.

Резистивно-емкостные фильтры нижних частот

Пример двухкаскадного RC-фильтра нижних частот с неинвертирующим операционным усилителем с единичным коэффициентом передачи, который используется в качестве буфера между двумя каскадами фильтра

Фильтры нижних частот пропускают только низкочастотные сигналы и подавляют высокочастотные сигналы. Частота среза определяется компонентами фильтра.

Такие фильтры широко используются в электронике. Например, их используют в сабвуферах для того, чтобы не подавать на них звуки высоких частот, которые они не могут воспроизводить. Фильтры нижних частот используются также в радиопередатчиках для блокировки нежелательных высокочастотных составляющих в передаваемом сигнале.

У тех, кто пользуется ADSL подключением к Интернету, всегда установлены частотные разделители с такими фильтрами нижних частот, которые предотвращают возникновение помех в аналоговых устройствах (телефонах) от сигналов DSL и воздействия помех от аналоговых устройств на оборудование DSL, подключенное к обычной телефонной линии.

Фильтры нижних частот используются для обработки сигналов перед их аналого-цифровым преобразованием.

Такие фильтры улучшают качество аналоговых сигналов при их дискретизации и необходимы для подавления высокочастотных компонентов сигнала выше частоты Найквиста таким образом, чтобы он удовлетворял требованиям теоремы Котельникова для данной частоты дискретизации, то есть максимальная частота не должна быть выше половины частоты выборки.

На верхнем рисунке показан простой фильтр нижних частот. В нем используются только пассивные компоненты, поэтому он называется пассивным фильтром нижних частот (ФНЧ). В более сложных пассивных ФНЧ используются также катушки индуктивности.

В отличие от пассивных фильтров нижних частот, в активных фильтрах используются усилительные устройства, например, транзисторы или операционные усилители. В пассивные фильтрах также часто имеются операционные усилители, применяемые для развязки.

В зависимости от количества конденсаторов и катушек индуктивности, влияющих на крутизну частотной характеристики фильтра, они обычно называются «фильтрами первого порядка», «второго порядка» и так далее.

Фильтр, состоящий только из одного резистора и одного конденсатора, называется фильтром первого порядка.

Простой пассивный RC-фильтр верхних частот

Фильтры верхних частот пропускают только высокочастотные составляющие сигналов и ослабляют низкочастотные составляющие.

Фильтры верхних частот используются, например, в разделительных фильтрах звуковых частот (кроссоверах) для подавления низкочастотных составляющих в сигналах, подаваемых на высокочастотные динамики («пищалки»), которые не могут воспроизводить такие сигналы и к тому же обладают малой мощностью по сравнению с мощностью низкочастотных сигналов.

Активный фильтр верхних частот с операционным усилителем

Фильтры верхних частот часто используются для блокировки постоянной составляющей сигналов в тех случаях, когда она нежелательна.

Например, в профессиональных микрофонах очень часто используется «фантомное» питание постоянным напряжением, которое подается по микрофонному кабелю. В то же время микрофон записывает переменные сигналы, такие как человеческий голос или музыка.

Постоянное напряжение не должно появляться на выходе микрофона и не должно поступать на вход микрофонного усилителя, поэтому для его блокировки используется фильтр верхних частот.

Простой полосовой фильтр, собранный из двух каскадов — фильтра нижних частот (C2, R2) и фильтра высоких частот (C1, R1)

Если фильтр нижних частот и фильтр верхних частот стоят друг за другом, они образуют полосовой фильтр, который пропускает частоты только в определенной полосе частот и не пропускает частоты за пределами этой полосы. Такие фильтры широко используются в радиоприемниках и радиопередатчиках.

В приемниках полосовые фильтры используются только для селективного пропускания и усиления сигналов радиостанции в требуемой узкой полосе частот. При этом сигналы других радиостанций за пределами этой полосы подавляются. Передатчики могут передавать радиосигналы только в определенном разрешенном для них диапазоне частот.

Поэтому в них используются полосовые фильтры для ограничения полосы передаваемого сигнала таким образом, что он вписывался в допустимые пределы.

Постоянная времени определяется по формуле

где τ — постоянная времени в секундах, R — сопротивление в омах и C — емкость в фарадах.

Постоянная времени RC-цепи определяется как время, которое требуется, чтобы конденсатор зарядился до 63,2% его максимально возможного заряда при условии, что начальный заряд нулевой.

Отметим, что конденсатор зарядится до 63,2% за время τ и почти полностью (до 99,3%) зарядится за время 5τ.

Энергия E, которую хранит полностью заряженный до напряжения V конденсатор, при условии, что время заряда T ≫ τ, определяется формулой

где C — емкость в фарадах и V — напряжение в вольтах.

Максимальный ток I определяется по закону Ома:

Максимальный заряд Q определяется по формуле

где C — емкость в фарадах и V — напряжение в вольтах.

Фильтрующие электролитические конденсаторы на системной плате компьютера

Делитель напряжения на резисторах калькулятор онлайн

Калькулятор для расчета делителя напряжения

Код для вставки без рекламы с прямой ссылкой на сайт. Код для вставки с рекламой без прямой ссылки на сайт. Скопируйте и вставьте этот код на свою страничку в то место, где хотите, чтобы отобразился калькулятор. Калькулятор справочный портал. Избранные сервисы. Кликните, чтобы добавить в избранные сервисы.

Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Урок 11. ВСЕ Способы соединения резисторов

Делитель напряжения на резисторах

Для того, чтобы получить из исходного напряжения лишь его часть используется делитель напряжения voltage divider. Это схема, строящаяся на основе пары резисторов. В примере, на вход подаются стандартные 9 В. Но какое напряжение получится на выходе V out? Или эквивалентный вопрос: какое напряжение покажет вольтметр?

Ток, протекающий через R1 и R2 одинаков пока к выходу V out ничего не подключено. А суммарное сопротивление пары резисторов при последовательном соединении:.

Так с помощью пары резисторов мы изменили значение входного напряжения с 9 до 5 В. Это простой способ получить несколько различных напряжений в одной схеме, оставив при этом только один источник питания.

Другое применение делителя напряжения — это снятие показаний с датчиков. Существует множество компонентов, которые меняют своё сопротивление в зависимости от внешних условий.

Так термисторы меняют сопротивление от нуля до определённого значения в зависимости от температуры, фоторезисторы меняют сопротивление в зависимости от интенсивности попадающего на них света и т.

Если в приведённой выше схеме заменить R1 или R2 на один из таких компонентов, V out будет меняться в зависимости от внешних условий, влияющих на датчик.

Подключив это выходное напряжение к аналоговому входу Ардуино, можно получать информацию о температуре, уровне освещённости и других параметрах среды.

Значение выходного напряжения при определённых параметрах среды можно расчитать, сопоставив документацию на переменный компонент и общую формулу расчёта V out.

С делителем напряжения не всё так просто, когда к выходному подключения подключается какой-либо потребитель тока, который ещё называют нагрузкой load :.

В этом случае V out уже не может быть расчитано лишь на основе значений V in , R1 и R2 : сама нагрузка провоцирует дополнительное падение напряжения voltage drop.

Пусть нагрузкой является нечто, что потребляет ток в 10 мА при предоставленных 5 В. Тогда её сопротивление. В случае с подключеной нагрузкой следует рассматривать нижнюю часть делителя, как два резистора соединённых параллельно:. Как видно, мы потеряли более полутора вольт напряжения из-за подключения нагрузки.

И тем ощутимее будут потери, чем больше номинал R2 по отношению к сопротивлению L. Чтобы нивелировать этот эффект мы могли бы использовать в качестве R1 и R2 резисторы, например, в 10 раз меньших номиналов. Однако, у снижения сопротивления делящих резисторов есть обратная сторона медали.

Большое количество энергии от источника питания будет уходить в землю. В том числе при отсоединённой нагрузке. Это небольшая проблема, если устройство питается от сети, но — нерациональное расточительство в случае питания от батарейки. Кроме того, нужно помнить, что резисторы расчитаны на определённую предельную мощьность.

В нашем случае нагрузка на R1 равна:. А это в раз выше максимальной мощности самых распространённых резисторов! Попытка воспользоваться описанной схемой со сниженными номиналами и стандартными 0.

Очень вероятно, что результатом будет возгарание.

Делитель напряжения подходит для получения необходимого заниженного напряжения в случаях, когда подключенная нагрузка потребляет небольшой ток доли или единицы миллиампер.

Делитель не подходит для подачи напряжения на мощных потребителей вроде моторов или светодиодных лент.

Чем меньшие номиналы выбраны для делящих резисторов, тем больше энергии расходуется впустую и тем выше нагрузка на сами резисторы.

Чем номиналы больше, тем больше и дополнительное нежелательное падение напряжения, провоцируемое самой нагрузкой. Если потребление тока нагрузкой неравномерно во времени, V out также будет неравномерным.

Вики Форум Блог. Делитель напряжения: схема и расчёт. Применение делителя для считывания показаний датчика.

А суммарное сопротивление пары резисторов при последовательном соединении: Таким образом, сила тока протекающая через резисторы Теперь, когда нам известен ток в R2 , расчитаем напряжение вокруг него: Или если отавить формулу в общем виде: Так с помощью пары резисторов мы изменили значение входного напряжения с 9 до 5 В.

С делителем напряжения не всё так просто, когда к выходному подключения подключается какой-либо потребитель тока, который ещё называют нагрузкой load : В этом случае V out уже не может быть расчитано лишь на основе значений V in , R1 и R2 : сама нагрузка провоцирует дополнительное падение напряжения voltage drop. Тогда её сопротивление В случае с подключеной нагрузкой следует рассматривать нижнюю часть делителя, как два резистора соединённых параллельно: Подставив значение в общую формулу расчёта V out , получим: Как видно, мы потеряли более полутора вольт напряжения из-за подключения нагрузки.

Пропорция сохраняется, V out не меняется: А потери уменьшатся: Однако, у снижения сопротивления делящих резисторов есть обратная сторона медали. В нашем случае нагрузка на R1 равна: А это в раз выше максимальной мощности самых распространённых резисторов! Инструменты пользователя Войти. Недавние изменения Управление медиафайлами Все страницы.

Калькулятор для расчета делителя напряжения

Используя только два резистора и входное напряжение, мы можем создать выходное напряжение, составляющее определенную часть от входного.

Делитель напряжения является одной из наиболее фундаментальных схем в электронике. В вопросе изучения работы делителя напряжения следует отметить два основных момента — это сама схема и формула расчета.

Схема делителя напряжения включает в себя входной источник напряжения и два резистора.

Онлайн калькулятор подбора резисторов для делителя напряжения обратной связи в DC-DC преобразователях. Калькулятор делителя.

Делитель напряжения на резисторах расчет

Делитель напряжения позволяет получить пониженное напряжение. Рассмотрим, как работает делитель напряжения на резисторах и предоставим онлайн калькулятор делителя.

Делитель напряжения на резисторах — это схема, позволяющая получить из высокого напряжения пониженное напряжение. Используя всего два резистора, мы можем создать любое выходное напряжение, составляющее меньшую часть от входного напряжения.

Делитель напряжения является фундаментальной схемой в электронике и робототехнике. Для начала рассмотрим электрическую схему и формулу для расчета.

Для того, чтобы разобраться в принципе работы резисторного делителя напряжения и понять, как рассчитать делитель напряжения на резисторах, следует ознакомиться с его принципиальной схемой см. Схема включает в себя входное напряжение и два резистора.

Делитель напряжения онлайн калькулятор

Обнаружен блокировщик рекламы. Сайт Паяльник существует только за счет рекламы, поэтому мы были бы Вам благодарны если Вы внесете сайт в список исключений. Как это сделать? Он-лайн калькуляторы.

Такие устройства применяют для создания нужного напряжения в определенном узле электрической схемы. Это необходимо для обеспечения функциональности регуляторов, фильтров, датчиков.

Формулы, позволяющие рассчитать сопротивление для понижения напряжения

Делитель напряжения — это простой и удобный способ получить нужное напряжение в определенной точке схемы.

Он используется в цепях обратной связи для измерения выходных параметров, когда на выходе десятки вольт, а измерительный вход микросхемы рассчитан на единицы или доли вольт и во множестве других целей. Простейший вариант строится на резисторах их может быть 2 и больше.

Давайте разберемся как рассчитать данный элемент цепи. Можно сделать это вручную или использовать следующий онлайн калькулятор, который выполняет расчет делителя напряжения на резисторах:.

Делитель напряжения, формула

Резисторный делитель напряжения — одна из основополагающих конструкций в электронике, без которой не обходится ни одно устройство. Подбор сопротивлений задаёт нужные режимы работы.

Как правило, эта конструкция содержит два резистора. Один ставится между входом и выходом схемы. Второй резистор одним концом подключается к общему проводу, а вторым — к выходу схемы, тем самым его шунтируя.

Он также играет роль нагрузки источника, подключённого ко входу.

Делитель напряжения — это следующий онлайн калькулятор.

Он-лайн калькуляторы для радиолюбителя

Благодарим пользователя zapimir за разработку и предоставление калькулятора для www. Блог new. Технические обзоры.

Калькулятор расчета делителя напряжения

Схема делителя напряжения является простой, но в тоже время фундаментальной электросхемой, которая очень часто используется в электронике.

Принцип работы ее прост: на входе подается более высокое входное напряжение и затем оно преобразуется в более низкое выходное напряжение с помощью пары резисторов. Формула расчета выходного напряжения основана на законе Ома и приведена ниже.

Существует несколько обобщений, которые следует учитывать при использовании делителей напряжения. Это упрощения, которые упрощают оценку схемы деления напряжения.

Используя только два резистора и входное напряжение, мы можем создать выходное напряжение, составляющее определенную часть от входного. Делитель напряжения можно представить как два последовательных участка цепи, называемые плечами, сумма напряжений на которых равна входному напряжению. Плечо между нулевым потенциалом и средней точкой называют нижним с него обычно снимается выходное напряжение делителя , а другое — верхним.

Различают линейные и нелинейные делители напряжения. В линейных выходное напряжение изменяется по линейному закону в зависимости от входного. Такие делители используются для задания потенциалов и рабочих напряжений в различных точках электронных схем.

Нелинейные делители напряжения применяются в функциональных потенциометрах.

Используя только два резистора и входное напряжение, мы можем создать выходное напряжение, составляющее определенную часть от входного. Делитель напряжения является одной из наиболее фундаментальных схем в электронике. В вопросе изучения работы делителя напряжения следует отметить два основных момента — это сама схема и формула расчета.

Источник: https://all-audio.pro/c6/obzori/delitel-napryazheniya-na-rezistorah-kalkulyator-onlayn.php

Делитель напряжения на резисторах. Формула расчета, онлайн калькулятор

Калькулятор для расчета делителя напряжения

Делитель напряжения — это простая схема, которая позволяет получить из высокого напряжения пониженное напряжение.

Используя только два резистора и входное напряжение, мы можем создать выходное напряжение, составляющее определенную часть от входного. Делитель напряжения является одной из наиболее фундаментальных схем в электронике. В вопросе изучения работы делителя напряжения следует отметить два основных момента – это сама схема и формула расчета.

Схема делителя напряжения на резисторах

Схема делителя напряжения включает в себя входной источник напряжения и два резистора. Ниже вы можете увидеть несколько схематических вариантов изображения делителя, но все они несут один и тот же функционал.

Обозначим резистор, который находится ближе к плюсу входного напряжения (Uin) как R1, а резистор находящийся ближе к минусу как R2. Падение напряжения (Uout) на резисторе R2 — это пониженное напряжение, полученное в результате применения резисторного делителя напряжения.

Расчет делителя напряжения на резисторах

Расчет делителя напряжения предполагает, что нам известно, по крайней мере, три величины из приведенной выше схемы: входное напряжение и сопротивление обоих резисторов. Зная эти величины, мы можем рассчитать выходное напряжение.

Формула делителя напряжения

Это не сложное упражнение, но очень важное для понимания того, как работает делитель напряжения. Расчет делителя основан на законе Ома.

Для того чтобы узнать какое напряжение будет на выходе делителя, выведем формулу исходя из закона Ома. Предположим, что мы знаем значения Uin, R1 и R2. Теперь на основании этих данных выведем формулу для Uout. Давайте начнем с обозначения токов I1 и I2, которые протекают через резисторы R1 и R2 соответственно:

Наша цель состоит в том, чтобы вычислить Uout, а это достаточно просто используя закон Ома:

Хорошо. Мы знаем значение R2, но пока неизвестно сила тока I2. Но мы знаем кое-что о ней. Мы можем предположить, что I1 равно I2. При этом наша схема будет выглядеть следующим образом:

Что мы знаем о Uin? Ну, Uin это напряжение на обоих резисторах R1 и R2. Эти резисторы соединены последовательно, при этом их сопротивления суммируются:

И, на какое-то время, мы можем упростить схему:

Закон Ома в его наиболее простом вид: Uin = I *R. Помня, что R состоит из R1+R2, формула может быть записана в следующем виде:

А так как I1 равно I2, то:

Это уравнение показывает, что выходное напряжение прямо пропорционально входному напряжению и отношению сопротивлений R1 и R2.

 Применение делителя напряжения на резисторах

В радиоэлектронике есть много способов применения делителя напряжения. Вот только некоторые примеры где вы можете обнаружить их.

Потенциометры

Потенциометр представляет собой переменный резистор, который может быть использован для создания регулируемого делителя напряжения.

Изнутри потенциометр представляет собой резистор и скользящий контакт, который делит резистор на две части и передвигается между этими двумя частями. С внешней стороны, как правило, у потенциометра имеется три вывода: два контакта подсоединены к выводам резистора, в то время как третий (центральный) подключен к скользящему контакту.

Если контакты резистора подключения к источнику напряжения (один к минусу, другой к плюсу), то центральный вывод потенциометра будет имитировать делитель напряжения.

Переведите движок потенциометра в верхнее положение и напряжение на выходе будет равно входному напряжению. Теперь переведите движок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если же установить ручку потенциометра в среднее положение, то мы получим половину входного напряжения.

Резистивные датчики

Большинство датчиков применяемых в различных устройствах представляют собой резистивные устройства. Фоторезистор представляет собой переменный резистор, который изменяет свое сопротивление, пропорциональное количеству света, падающего на него. Так же есть и другие датчики, такие как датчики давления, ускорения и термисторы и др.

Так же резистивный делитель напряжения помогает измерить напряжение при помощи микроконтроллера (при наличии АЦП).

Пример работы делителя напряжения на фоторезисторе

Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.

Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.

Источник: http://www.joyta.ru/7328-delitel-napryazheniya-na-rezistorax-raschet-onlajn/

Делитель напряжения на резисторах ⋆ diodov.net

Калькулятор для расчета делителя напряжения

Рассмотрим, как рассчитать практически любой делитель напряжения на резисторах. Преимущественное большинство радиоэлектронных элементов и микросхем питаются относительно низким напряжением – 3…5 В. А многие блоки питания выдают U = 9 В, 12 В или 24 В.

Поэтому для надежной и стабильной работы различных электронных элементов необходимо снижать величину напряжения до приемлемого уровня. В противном случае может наступить пробой радиоэлектронных элементов.

Особенно следует уделять внимание микросхемам – наиболее чувствительным элементам к повышенному напряжению.

Существуют много способов, как снизить напряжение. Выбор того или другого способа зависит от конкретной задачи, что в целом определяет эффективность всего устройства. Мы рассмотрим самый простой способ – делитель напряжения на резисторах, который, тем не менее, довольно часто применяется на практике, но исключительно в маломощных цепях, что поясняется далее.

Расчет делителя напряжения на резисторах

Чтобы сделать и рассчитать простейший делитель напряжения достаточно соединить последовательно два резистора и подключить их источнику питания. Такая схема очень распространенная и применяется более чем в 90 % случаев.

Вход схемы имеет два вывода, а выход – три.

При одинаковых значения сопротивлений R1 и R2 выходные напряжения Uвых1 и Uвых2 также равны и по величине вдвое меньше входного Uвх.

Причем выходное U можно сниматься с любого из резисторов – R1 или R2. Если сопротивления не равны, то выходное U будет на резисторе большего номинала.

Точное соотношение Uвых1 к Uвых2 рассчитаем, обратившись к закону Ома. Резисторы вместе с источником питания образуют последовательную цепь, поэтому величина электрического тока, протекающего через R1 и R2 определяется отношением напряжения источника питания Uвх к сумме сопротивлений:

Следует обратить внимание, чем больше сумма сопротивлений, тем меньший ток I при том же значении Uвх.

Далее, согласно закону Ома, подставив значение тока, находим Uвых1 и Uвых2:

Путем подстановки в две последние формулы значение из самой первой формулы, находим значение выходного U в зависимости от входного и сопротивлений двух резисторов:

Применяя  делитель напряжения на резисторах, необходимо понимать и помнить следующее:

    1. Коэффициент полезного действия такой схемы довольно низкий, поскольку только часть мощности источника питания поступает к нагрузке, а остальная мощность преобразуется в тепло, выделяемое на резисторах. Чем больше понижается напряжение, тем меньше мощности от источника питания поступит к нагрузке.

  1. Так как нагрузка подключается параллельно к одному из резисторов делителя, то есть шунтирует его, то общее сопротивление цепи снижается и происходит перераспределение падений напряжений. Поэтому сопротивление нагрузки должно быть гораздо больше сопротивления резистора делителя.

    В противном случае схема будет работать нестабильно с отклонением от заданных параметров.

  2. Распределение U между R1 и R2 определяется исключительно их относительными значениями, а не абсолютными величинами.

    В данном случае неважно, будут ли R1 и R2 иметь значение 2 кОм и 1 кОм или 200 кОм и 100 кОм. Однако при более низких значениях сопротивлений можно получить большую мощность на нагрузке, но следует помнить, что и больше мощности преобразуется в тепло, то есть израсходуется невозвратно впустую.

Также иногда находят применение и более сложные делители напряжений, состоящие из нескольких последовательно соединенных резисторов.

Делитель напряжения на переменном резисторе

Схему делителя напряжения на переменном резисторе называют схемой потенциометра. Вращая рукоятку громкости музыкального центра или автомагнитолы, вы таким действием плавно изменяете напряжение, подаваемое на усилитель модности звуковой частоты. Принцип работы и сборка простейшего усилителя мощности уже были ранее рассмотрены здесь.

При перемещении (вращении) ручки переменного резистора сверху вниз по чертежу происходит плавное изменение U от значения источника питания до нуля.

В звуковой технике главным образом применяются переменные резисторы с логарифмической зависимостью, поскольку слуховой аппарат человек воспринимает звуки с данной зависимостью. Для регулирования уровня звука одновременно по двум каналам используют сдвоенные переменные резисторы.

В качестве делителя напряжения находят применение переменные резисторы, имеющие следующие зависимости сопротивления от угла поворота ручки: логарифмическую, линейную и экспоненциальную. Конкретный тип зависимости применяется для решения отдельной задачи.

Источник: https://diodov.net/delitel-napryazheniya-na-rezistorah/

Калькулятор для расчета делителя напряжения – Электро Помощь

Калькулятор для расчета делителя напряжения

Расчет резистора для светодиода выполняется довольно просто, быстро и не содержит ничего «военного», только закон Ома. Хотя во всемирной сети существует множество онлайн-калькуляторов, помогающие определить различные параметры, но, по моему личному мнению, лучше один раз разобраться самому и понять физику процесса, чем слепо пользоваться подобными калькуляторами.

Самый частый пример – это подключение светодиода к источнику питания с напряжением 5 В, например к USB порту компьютера. Второй пример – подключение к аккумуляторной батарее автомобиля, номинальное значение напряжения которой 12 В.

Если к такому источнику питания напрямую подсоединить полупроводниковый прибор, то последний попросту выйдет из строя под действием протекающего тока, превышающего допустимое значение, ‑ произойдет тепловой пробой полупроводникового кристалла.

Поэтому нужно ограничивать величину тока.

С целью лучшей наглядности возьмем два типа светодиодов с наиболее распространенными характеристиками:

напряжение:

UVD1 = 2,2 В;

UVD2 = 3,5 В;

ток:

IVD1 = 0,01 А;

IVD2 = 0,02 А.

Расчет резистора для светодиода

Определим сопротивление R1,5 для VD1 при Uип = 5 В.

Для расчета величины сопротивления, согласно закону Ома нужно знать ток и напряжение:

R=U/I.

Величина тока, протекающего в цепи и в том числе через VD нам известна из заданного условия IVD1 = 0,01 А, поэтому следует определить падение напряжения на R1,5. Оно равно разности подведенного Uип = 5 В и падения напряжения на светодиоде UVD1 = 2,2 В:

Теперь находим R1,5

Из стандартного ряда сопротивлений выбираем ближайшее в сторону увеличения, поэтому принимаем R1,5 = 300 Ом.

Таким же образом выполним расчет R для VD2:

Произведем аналогичные вычисления при значении Uип = 12 В.

Принимаем R1,12 = 1000 Ом = 1 кОм.

Принимаем R2,12 = 430 Ом.

Для удобства выпишем полученные значения сопротивлений всех резисторов:

Следует заметить, что сопротивление, выбранное из стандартного ряда, превышает расчетное, поэтому ток в цепи будет насколько снижен. Однако этим снижением можно пренебречь в виде его малого значения.

Расчет мощности рассеивания

Определить сопротивление – это только полдела. Еще резистор характеризуется важным параметром, который называется мощность рассеивания P – это мощность, которую он способен выдержать длительное время, при этом, не перегреваясь выше определенной температуры. Она зависит ток в квадрате, так как последний протекая в цепи, вызывает нагрев ее элементов.

P = I2R.

Визуально резистор более высокой Р отличается большими размерами.

Выполним расчет P для всех 4-х резисторов:

Из стандартного ряда мощностей выбираем ближайшие номиналы в сторону увеличения: первые три сопротивления можно взять с мощностью рассеивания 0,125 Вт, а четвертый – с 0,250 Вт.

Запишем общий расчет резистора для светодиода. Следует определить всего три параметра:

1) падение напряжения

2) сопротивление

3) мощность рассеивания.

Как видно, понять и запомнить данный алгоритм достаточно просто. Теперь, в случае применения специальных калькулятор, вы будете понимать, что и как они считают. Кстати, алгоритмы многих подобных калькуляторов не учитывают стандартный ряд номинальных значений, поэтому будьте внимательны, а лучше считайте все сами – это очень полезно делать для приобретения ценного опыта.

  • Соединение резисторовСоединение резисторов разными способами позволяет получить необходимую величину сопротивления и мощности рассеивания одного эквивалентного резистора.…

Источник:

Расчёт резистивного делителя напряжения

Читать все новости ➔

Рассчитать делитель, состоящий из двух-трёх резисторов, не состав­ляет большого труда: формулы для рас­чёта можно найти в книгах и журналах по радиоэлектронике, на соответствую­щих сайтах в Интернете.

Но вот, если делитель содержит четыре и более резисторов, с расчётом могут возник­нуть трудности. Во всяком случае, автор нигде не смог найти формулы для расчёта резисторов делителя, если их число более трёх. Поэтому пришлось вывести эти формулы самостоятельно.

В предлагаемой статье автор знакомит читателей со своей методикой расчёта таких делителей напряжения.

Предположим, что от источника пи­тания напряжением 12 В необходимо получить четыре значения напряжения U1, U2, U3 и U4, соответственно равные 1, 3, 5 и 7 В. Перед проведением расчё­та нарисуем схему делителя напряже­ния на резисторах (см. рисунок).

Схе­ма так нарисована специально, чтобы номера позиционных обозначений ре­зисторов совпадали с номерами значе­ний создаваемых на них падений на­пряжения.

Как видно из схемы, для по­лучения четырёх значений напряжения требуются пять резисторов, сопротив­ление которых и требуется рассчитать.

Расчёт можно выполнить по сле­дующей методике. Сначала зададим произвольно значение общего сопро­тивления делителя Rдел учитывая при этом, что оно должно удовлетворять условию:

1 кОм ≤ Rдел ≤ 100 кОм.        (1)

Это условие не является жёстким, т. е. можно задавать и другие значения Rдел. Однако при этом надо иметь в виду, что при малых его значениях воз­растают тепловые потери на делителе, а при больших на точность полученных значений напряжения может влиять подключаемая к делителю нагрузка. Учитывая всё это, зададим значение, например, Rдел = 12 кОм.

Не утруждая внимание читателей полным выводом формул (хотя он и довольно прост), приведём конечный результат — формулы для расчёта резисторов делителя напряжения:

R1 = U1Rдел/Uпит;      (2)

R2 = U2Rдел/Uпит – R1;       (3)

RЗ = UЗRдел/Uпит-(R1+R2);     (4)

R4 = U4Rдел/Uпит – (R1+R2+RЗ).      (5)

И в заключение расчёта определим сопротивление резистора Rдоп:

Rдоп = Rдел-(R1+R2+RЗ+R4)     (6)

Для указанных выше условий при расчёте по приведённым формулам получим следующие значения со­противления резисторов: R1 = 1 кОм, R2 = 2 кОм, R3 = 2 кОм, R4 = 2 кОм, Rдоп = 5 кОм.

В данном случае рассчи­танные значения сопротивления резис­торов R1 — R4 совпадают со значения­ми номиналов резисторов ряда Е24. А вот резистора с номиналом 5 кОм в этом ряду нет.

Следует иметь в виду, что для полу­чения реальных значений напряжения U1-U4, как можно более точно соот­ветствующих заданным, все резисторы делителя необходимо подбирать с помощью омметра, чтобы их реальные значения сопротивления наиболее точ­но соответствовали полученным при расчёте, или использовать прецизион­ные резисторы из ряда Е48 с отклоне­нием от номинала ±1 %.

Анализ показывает, что, начиная с формулы (3), для расчёта R2 и далее любого Ri, (где (i≥2) можно использо­вать формулу:

Источник: https://elektriki23.ru/osnovy/kalkulyator-dlya-rascheta-delitelya-napryazheniya.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.