Можно ли сделать плавный пуск трёхфазного двигателя через блок защиты галогенных ламп?

Содержание

Плавное включение ламп накаливания (cхемы, устройство)

Можно ли сделать плавный пуск трёхфазного двигателя через блок защиты галогенных ламп?

Лампы накаливания светят около 1000 часов, но если их часто включают и выключают – срок службы становится еще ниже. Продлить срок службы можно, установив устройство плавного включения ламп накаливания, а описанный метод подходит и для защиты галогеновых ламп.

Причины преждевременного перегорания

Лампы накаливания – старый источник света, его конструкция предельно проста – в герметичной стеклянной колбе установлена спираль из вольфрама, когда через нее течет ток, она нагревается и начинает светиться.

Однако такая простота не значит долговечность и надежность. Их срок службы порядка 1000 часов, а часто и того меньше. Причиной перегорания могут стать:

  • скачки напряжения в питающей сети;
  • частые включения и выключения;
  • другие причины типа перепадов температуры, механических повреждений и вибраций.

В этой статье мы рассмотрим, как минимизировать вред от частых включений лампы. Когда лампочка выключена, ее спираль холодная. Ее сопротивление в 10 раз ниже, чем у горячей спирали. Основным режимом работы является горячее состояние лампы. Из закона Ома известно, что ток зависит от сопротивления, чем оно ниже, тем выше ток.

Когда вы включаете лампу, через холодную спираль протекает большой ток, но по мере ее нагрева он начинает снижаться. Первоначальный высокий ток оказывает разрушительное воздействие на спираль. Для того чтобы этого избежать нужно организовать плавное включение ламп накаливания.

Диммер для плавного включения

Принцип работы

Чтобы ограничить ток включения лампы накаливания можно понизить начальное напряжение и постепенно повысить его до номинальной величины. Для этого используют устройство плавного включения ламп накаливания.

Прибор включается в разрыв питающего провода между выключателем и светильником. Когда вы подаете напряжение, в первый момент времени оно близко к нулю, схема плавного розжига постепенно повышает его. Обычно они собраны по схеме фазоимпульсного регулятора на тиристорах, симисторе или полевых транзисторах.

Скорость нарастания напряжения зависит от схемотехники устройства, обычно 2–3 секунды от 0 до 220 В.

Основной характеристикой блока защиты является допустимая мощность подключенной нагрузки. Обычно лежит в пределах 100–1500 Вт.

Готовые решения

Блоки защиты для светильников продаются практически в каждом магазине бытовых и электротоваров. Такой блок может называться иначе, чем было сказано выше, например: «Устройство защиты галогеновых ламп и ламп накаливания» или другое подобное название. Как уже отмечалось, при покупке, главное, на что следует обратить внимание – это мощность блока розжига.

Широкую линейку таких устройств выпускают под торговой маркой «Гранит».

Предложение от “Гранит”

Есть и миниатюрные блоки Navigator их можно удобно спрятать в распредкоробку, если она не набита проводами доверху. Также поместится внутрь большинства светильников, например, в основание настольной лампы, или между потолком и люстрой, если есть такая возможность.

Компактный блок защиты

Схемы

Так как устройство плавного включения ламп накаливания и галогенных ламп не представляет особой сложности с точки зрения схемотехники, его можно собрать своими руками. Процесс сборки может быть осуществлен:

  • навесным монтажом;
  • на макетной плате;
  • на печатной плате.

И зависит от ваших навыков и возможностей самым надежным будет вариант на печатной плате, от навесного монтажа в этом случае лучше держаться подальше, если вы не владеете особенностями такого монтажа в цепях 220 В.

Плавное включение ламп 220 В: схема на тиристоре

Схема первая представлена на рисунке ниже. Основным ее функциональным элементом является тиристор, включенный в плечах диодного моста. Номиналы всех элементов подписаны.

Если использовать ее в качестве плавного розжига для торшера, настольной лампы или другого переносного светильника – удобно заключить ее в корпус, подойдет распредкоробка для наружного монтажа. На выходе установить розетку для подключения светильника. По сути – это обычный диммер, и плавного пуска как такового здесь нет.

Вы просто поворачиваете ручку потенциометра, плавно увеличивая напряжение на лампе. Кстати, такая приставка подойдет и для регулировки мощности паяльника или других электроприборов (плиты, коллекторного двигателя и т. д.).

Вариант реализации схемы

Плавное включение ламп 220 В: схема на симисторе

Можно уменьшить количество деталей и собрать такую же схему, которая установлена в фирменные блоки защиты. Она изображена на рисунке ниже.

Схема с симистором

Чем больше постоянная времени R2С1 цепочки, тем дольше происходит розжиг. Для увеличения времени нужно увеличить емкость C1, обратите внимание – это полярный или электролитический конденсатор. Конденсатор C2 должен выдерживать напряжение не менее 400 В – это неполярный конденсатор.

Чтобы увеличить мощность подключенных ламп – измените симистор VS1 на любой подходящий по току к вашей нагрузке.

Дроссель L1 – это фильтрующий элемент, он нужен для уменьшения помех в сети от включения симистора. Его использовать необязательно, на работу схемы не влияет.

Когда включается SA1 (выключатель), ток начинает течь через лампу, дроссель и конденсатор С2. За счет реактивного сопротивления конденсатора, ток через лампу течет маленький. Когда напряжение до которого зарядится С1 достигнет порога открытия симистора – ток потечет через него, лампа включится в полный накал.

Плавное включение ламп 220 В: схема на ИМС КР1182ПМ1

Есть вариант и плавного включения с помощью микросхемы КР1182ПМ1, она обеспечивает плавный пуск ламп и другой нагрузки мощностью до 150 Вт. Подробное описание этой микросхемы вы найдете здесь:

Схема

а ниже изображена схема устройства, она предельно проста:

Простая схема

Или вот ее модернизированный вариант для включения мощной нагрузки:

Проработанная схема

Дополнительно установлен тиристор BTA 16–600, он рассчитан на ток до 16 А и напряжение до 600 В, это видно из маркировки, но можно взять и любой другой. Таким образом, вы можете включать нагрузку мощностью до 3,5 кВт.

Плавное включение ламп 12 В

Часто для точечных светильников используются лампы с напряжением 12 В. Для преобразования 220 в 12 В в настоящее время используют электронные трансформаторы. Тогда устройство плавного включения нужно подключать в разрыв питающего провода электронного трансформатора.

Плавное включение ламп в автомобиле

Если стоит задача организовать плавное включение автомобильных ламп 12 V, то здесь такие схемы не подойдут. В электроцепи автомобиля используется напряжение 24 или 12 V постоянного тока. Здесь можно применить линейные или импульсные схемы так называемые ШИМ-регуляторы.

Простейшим вариантом будет использование двухступенчатой схемы включения.

Двухступенчатая схема включение

Эта схема устанавливается параллельно включаемым лампам. Сначала ток течет через резистор, а лампы горят тускло. Через небольшое время, порядка полсекунды, включается реле, и ток течет через его силовые контакты, они в свою очередь шунтируют резистор и лампы зажигаются на полную яркость.

Номинал резистора от 0,1 до 0,5 Ом, он должен быть большой мощности – около 5 Вт, например, в керамическом корпусе.

Второй вариант – собрать импульсный блок для плавного розжига. Его схема сложнее:

Более сложный для реализации вариант

Список компонентов:

  • R1=2 k.
  • R2=36 k.
  • R3=0,22.
  • R4=180.
  • R5, 7=2,7 k.
  • R6=1 M.
  • C1=100 n.
  • C2=22×25 B.
  • C3=1500 p.
  • C4=22×50 B.
  • C5=2 мкф.
  1. Микросхема MC34063A или МС34063А, или КР1156ЕУ5.
  2. Полевой транзистор IRF1405 (или любой N-канальный с похожими параметрами: IRF3205, IRF3808, IRFP4004, IRFP3206, IRFP3077).
  3. Дроссель 100 мкГн, на ток не менее 500 мА.
  4. Светодиоды.
  5. Диоды 1N5819.

Время включения регулируется цепью R6C5. Увеличьте емкость, чтобы увеличить время.

Если вам сложно сделать такую схему, можете купить готовую сборку, типа автоконтроллера ЭКСЭ-2А-1 (25 А/IP54) или любой другой подходящий. В конкретно этой модели есть 2 канала, под каждую фару, 8 программ работы. Он основан на микроконтроллере PIC.

Готовое решение без лишних хлопот

Подводим итоги

Плавное включение галогенных ламп и ламп накаливания значительно продлевает их срок службы – до 5–7 раз. С другой стороны – добавление в схему лишних элементов снижает ее надежность. В любом случае стоит попробовать использовать блоки плавного розжига независимо идет речь о лампах для домашних светильников или автомобильных.

ПредыдущаяСледующая

Источник: https://LampaExpert.ru/vidy-i-tipy-lamp/nakalivaniya/chto-takoe-plavnoe-vklyuchenie-dlya-chego-ono-nuzhno

Плавный пуск двигателя – советы электрика – Лед совет

Можно ли сделать плавный пуск трёхфазного двигателя через блок защиты галогенных ламп?

Обычная розетка, если ее немного доработать, может продлить жизнь любому вашему инструменту — болгарке, циркулярной пиле, триммеру и т.п.

Все что для этого нужно — маленькая коробочка плавного пуска стоимостью около 200 рублей. Например такой марки как KRRQD12A.

Метеорит72 – лучший интернет магазин светодиодного освещения! Товары высочайшего качества, безупречный сервис, широчайший ассортимент, отличные цены, гарантия. Посмотреть продукцию >>>

Общеизвестно, что далеко не всякий инструмент снабжен подобными схемами плавного пуска. В основном они идут в дорогих моделях известных брендов Bosch, Hilti, DeWalt. Причем как в сетевой линейке, так и в аккумуляторной.

Электроинструмент без такого устройства имеет кучу недостатков:

  • искрение якоря на коллекторе с выгоранием ламелей якоря
  • выгорание щеток и более быстрое их стачивание
  • чаще выходят из строя обмотки ротора и статора
  • токовый бросок в общую электросеть
  • удары шестерней друг о друга и более быстрое их срабатывание
  • опасный рывок при запуске, вырывающий инструмент из рук и повышающий травмоопасность

При работе с торцевой пилой имеющей ПП, диск не будет сбиваться с подготовленной точки реза. Что немаловажно для непрофессиональных столяров.

Если у вас на даче или в доме на начальном этапе строительства еще нет электроэнергии и вы пользуетесь генератором, то рано или поздно поймете, что без БПП (блока плавного пуска) с резкими начальными токами, генератор долго не протянет. Поэтому такая штука способна сберечь не только инструмент, но и аварийные источники питания.

Можно конечно самостоятельно встроить БПП во внутрь той же болгарки или торцовки, однако разбирать технику и ковыряться во внутренностях охота далеко не каждому.

Плюс ко всему прочему, вскрытие нового корпуса влечет за собой потерю гарантии. Поэтому лучшее применение для блока KRRQD12A – это внешнее подключение.

Данная коробочка рассчитана на ток 12 Ампер.

Есть и более мощная модель на 20А.

Что характерно, габариты у них одинаковые, а разница в цене пару десятков рублей.

Обратите внимание

Казалось бы лучше взять ее, но для стандартной розетки в 16А более выгоден первый вариант. Не будет желания подключать более мощную нагрузку и тем самым подпалить все контакты.

Мастера самоделкины конечно собирают подобные схемки и своими руками, на основе тиристоров ВТА 12-600 или других, конденсаторов, динистора и парочки мелких резисторов. Примеров схем в интернете можно найти множество.

Но рядовому пользователю инструмента, гораздо проще все это купить в уже готовом компактном корпусе. Заказать подобный блок можно по ссылке отсюда.

Кстати будьте внимательны, есть похожие устройства, но с тремя проводками. Например XS-12/D3.

Или другие модели внешне похожие на KRRQD.

Но они собраны на несколько другом принципе и их нужно устанавливать после кнопки ПУСК, в самом инструменте. Напряжение на них должно подаваться только в момент замыкания пусковой кнопки болгарки и сразу исчезать после ее отпускания.

Схема подключения на них следующая:

Фаза подается на контакт “А”, ноль на “С”. Далее фаза выходным проводом управления идет на двигатель (это как раз третий проводок).

В двухпроводном блоке такого нет, так как подключается он в разрыв цепи, и напряжение (разность потенциалов) к нему прикладывается только в момент пуска и работы инструмента.

Еще один момент – так называемый электрический тормоз или тормозная обмотка на торцовках. С 3-х проводным внешним УПП он может не работать, а вот с 2-х проводной моделью будет.

Самое главное требование для такой розетки – это ее мобильность. Поэтому вам понадобится переноска.

С помощью нее можно будет плавно запускать инструмент в любом месте – в гараже, на даче, при строительстве своего дома на разных участках стройплощадки.

Первым делом переноску нужно разобрать.

Основные провода питания в ней могут быть либо припаяны, либо подсоединены на винтовых зажимах.

Важно

В зависимости от этого, также будет происходить и подключение вашей дополнительной розетки. Это должна быть именно дополнительная розетка возле переноски, чтобы иметь возможность одновременно подключать инструмент в разных режимах.

Кстати, если вы по ошибке включите болгарку или циркулярку, имеющие заводской встроенный плавный пуск в розетку, также снабженной таким УПП, то на удивление все будет работать. Единственный момент – получится задержка запуска пилы или оборотов диска на пару секунд, что не очень удобно в работе и без привычки может озадачить.

Источник: https://LEDsovet.ru/plavnyi-pysk-dvigatelia-sovety-elektrika/

Схема блока защиты ламп от перегорания

Можно ли сделать плавный пуск трёхфазного двигателя через блок защиты галогенных ламп?

Осветительные лампы имеют небольшую долговечность, что является проблемой в современном мире. Во время включения питания ламп происходит выход их из строя, что является актуальной проблемой.

Нить накаливания в холодном виде образует небольшое сопротивление. Оно слишком уменьшено, чем сопротивление раскаленной нити электротоком.

Мы зажигаем свет, то нить лампы в холодном состоянии, и значение тока существенно выше номинала, поэтому она имеет свойство перегорать.

Лампы в светильниках и люстрах перегорают по различным причинам. Если она одна, то это уже лучше. Можно сэкономить на покупке лампочек, если знать основную причину. Кроме экономии у вас не выйдет из строя светильник, или того хуже, не случится пожар в доме.

Существует множество разных вариантов модуля защиты ламп. Некоторые способы защиты ламп разберем на примерах в материалах из жизни.

Полная защита осветительных ламп

Предлагаемый блок защиты ламп служит для продления срока службы ламп накаливания и от преждевременного выхода из строя накаливающей нити при резкой подаче напряжения при эксплуатации ламп.

Данный способ особенно подойдет для ламп, расположенных в труднодоступных местах (рекламные щиты, столбы для освещения). Этот прибор хорош и дома, так как в квартире нередко перегорают лампы.

Установив это устройство, решается проблема частой замены ламп в связи с выходом их из строя.

Устройство защиты осветительных ламп создает медленный разогрев нити в течение нескольких секунд при включении света.

Если напряжение внезапно отключится на короткое время, а затем снова включится, то процесс плавного нагрева нити повторится после вновь поданного напряжения. Происходит стабилизация питания, наибольшее значение его уменьшается до 220 вольт.

Блок защиты ламп обладает минимальным временем реагирования на скачки напряжения – несколько миллисекунд. Контроллер управления имеет защиту.

Модуль защиты ламп выдерживает ток импульса 140 ампер, что дает возможность не ставить предохранитель, и быть уверенным в надежности системы и защите ламп.

Схема устройства:

Резистор для подстройки на 300 кОм изображен условно. При применении точных деталей он не нужен. В нашем случае R7 и R8 объединяются в одно сопротивление значением 1,15 мОм. Конкретное значение определяется выходом «Тест».

Прибор подключается к сети с точным напряжением 220 вольт переменного тока, и регулировкой резистора ставится логическая единица на выходе «Тест».

Для выбора порога стабильного напряжения меньше, чем 220 вольт, эту процедуру проводят при напряжении 215 вольт.

Мощностные характеристики ламп должны иметь границы наибольшим током триака ВТ139-600. Нельзя допустить ток выше 16 ампер. Прибор сочетается с лампами до 3,5 кВт мощности при условии, что триак будет установлен на радиаторе для теплоотвода. Без радиатора можно подсоединять лампы до 300 ватт. Для подключения к прибору ламп нагрузкой более 3500 ватт применяют триак мощнее.

Дроссель для подавления помех в схеме питающей цепи не предусмотрен, так как помехи могут поступать наружу от прибора только тогда, когда разогрев спирали ламп во время пуска за 2,5 секунды превышено напряжение питания сети более 220 вольт.

Это незначительно, и триак после разогрева при малом напряжении открывается. Чтобы устройство стоило недорого, это можно не учитывать.

Если необходимо полностью сделать защиту от помех радиоволн, то монтируют дроссель большой мощности между нагрузкой и вторым выводом, в этом нет особых проблем.

Контроллер схемы можно заменить другим, подходящим по параметрам. Также поступают и с триаком, подобного типа, подобранным по току нагрузки. Управляющий ток триака не рекомендуется подбирать выше 50 миллиампер. Защита ламп обеспечена.

Блок защиты ламп накаливания и галогенных

Он представляет собой конденсатор мощностью до 200 Вт. Существуют схемы защиты галогенных ламп и с большей мощностью. Он защищает лампы, плавный разогрев нити накаливания, что значительно замедлит процесс износа, увеличит срок службы.

Продемонстрируем его подключение на практике, на лампах накаливания и галогенных лампах. На энергосберегающие лампы он никак не действует.

Для сравнения результатов сначала подключим без блока защиты. Лампа зажигается мгновенно. Теперь подключим блок защиты ламп. Он подключается на фазовый провод. Для определения фазы пользуемся индикаторной отверткой. Подключаем блок с помощью зажимных клемм.

Данный блок предназначен для работы с трансформаторами и с понижающими катушками. Он не рассчитан на работу с люминесцентными лампами, электромоторами и подобными механизмами, приборами подобными ему.
Подключаем сеть, примерно две секунды лампа зажигается, очень плавный пуск. От резкого включения лампа не лопнет, и будет служить дольше.

Для сравнения подключим галогенную лампу. Вставляем лампу в патрон, подключаем к сети. Подключение защиты галогенных ламп получается аналогичным. Такой розжиг можно использовать там, где есть нить накаливания.

Еще можно поставить термистор. Деталь копеечная, но работает надежно, помех не создает. Нужно брать термистор большого размера для более медленного нагрева, с сопротивлением выше 0,5 кОм. Его можно легко встроить внутрь любого корпуса, выключателя. На выводы надевается изоляция, она не плавится, так как температура небольшая.

Обычные лампочки накаливания со спиралью лучше подключать на меньшее напряжение (180-200 В). Если напряжение 240 вольт, то можно две лампы соединить последовательно.

Галогеновые лампы любят постоянное точное напряжение, поэтому их необходимо подключать к стабильному напряжению, и сделать плавный пуск (блок защиты ламп).

Как сберечь лампы от перегорания?

Лампы бывают энергосберегающие, спиральные, диодные. Они часто сгорают, а мы не знаем почему, что происходит. Нужно понять, почему это происходит.

Они сгорают из-за того, что существуют старые пылесосы, стиральные машины, моторы во дворе, у соседей есть старая техника. Люди ей пользуются, и при запуске этой техники происходит резкий скачок импульсной силы тока.

Мотор взял на себя ток, запустился, затем идет резкий скачок в сеть, возникает большая сила тока.

Во время выплеска большой силы тока происходит сгорание ламп. Чтобы не было этой проблемы, продаются модули защиты ламп — сетевые фильтры. В нем находится варистор. Устройство защиты светодиодных ламп рассчитано на силу тока в 100 ампер. При резком скачке напряжения и силы тока варистор гасит эти скачки. В сетевом фильтре стоит один обыкновенный варистор, который стоит копейки.

Французские фильтры имеют два варистора, и стоят они дорого. За эти деньги можно купить несколько сотен варисторов. Для этого каждый может сделать такой фильтр. Иногда умельцы ставят варисторы прямо в корпус розетки. Если варистор будет стоять в другой комнате, то он не поможет для лампочки на кухне или в коридоре.
Поможет варистор, который находится ближе от этого объекта.

Конструкция патрона – причина перегорания ламп

Одной из причин перегорания ламп является конструкция патрона. На контактах колодки нет пружинящего эффекта.

Средний контакт патрона пружинит, а боковые контакты просто упираются. Нужно немного подогнуть усики, сделать так, чтобы они пружинили. Простые колодки намного надежнее.

В них боковые усы пружинят, им ничто не мешает, лампы в них перегорают реже. Боковые ступеньки под контактами можно просто откусить плоскогубцами. Теперь у боковых контактов появился ход и хороший пружинящий эффект.

Защита ламп сделана, они перестают перегорать.

Вечная лампа накаливания

Для изготовления понадобится лампа, цоколь от другой лампы накаливания, предварительно снятый и очищенный, два диода Д226, инструменты (кусачки, плоскогубцы), надфиль, паяльные принадлежности. Подключение через диод позволяет повысить срок в разы. Исходя из опыта, можно сказать, что в подвале у меня лампочка такой конструкции работает исправно уже несколько лет.

В качестве диода применяется любой, на напряжение не менее 350 В. Учитываем силу тока, которая должна быть, не менее 0,5 А. Можно использовать диоды Д245, а в нашем случае Д226.

Такие диоды использовались в старых советских телевизорах, в любой старой радиотехнике. Их можно купить в магазине радиодеталей, стоят они копейки.

Схема подключения лампы через диод простая, но создает хорошую защиту.

Берем диод и откусываем один вывод корпуса под корень. Второй вывод в виде трубочки тоже откусываем.

В трубочку вставляем проволочку и запаиваем. Получается так:

Теперь наш диод без проблем влезет в цоколь. Берем паяльник и припаиваем диод к цоколю лампы:

Теперь берем цоколь и надеваем его, и опаиваем конец провода. Лишнюю часть провода откусываем. Зафиксируем в 3-4 местах два цоколя между собой паяльником.

Вечная лампочка готова. Единственный недостаток этой лампочки – мерцающий свет. Для подъезда или подвала мерцание не играет важной роли.

Принцип диода можно применить, поставив диод не в лампочке, а в выключателе или в светильнике. Этот способ будет полезен тем, кто не особо дружит с электричеством.

Можно использовать такую схему подключения лампы накаливания:

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Источник: https://elektronchic.ru/domashnij-elektrik/zashhita-lamp.html

Плавное включение ламп: принцип работы системы и инструкция по подключению своими руками. 10 проверенных схем!

Можно ли сделать плавный пуск трёхфазного двигателя через блок защиты галогенных ламп?

При использовании электроприборов необходимо обеспечить безопасные условия для их эксплуатации. Не является исключением и практика применения обычных ламп накаливания или галогенных модификаций. Показатели тока в момент включения превышают его номинальное значение.

При частом включении ламп это негативно влияет на их работоспособность и долговечность. В таких случаях целесообразно обеспечить плавное включение ламп накаливания.

Для чего используется

Одной из причин, приводящих к поломке ламп накаливания, является резкий скачок тока, который происходит при включении. Этот факт нужно учитывать, отвечая на вопрос, как работает плавное включение ламп.

Если вольфрамовая нить лампы не нагрета, оставаясь в холодном состоянии, то у нее все равно присутствует некоторое сопротивление. Причем его величина достаточно высока, например для изделия с мощностью 75 Вт она равна 52,4 Ом. Можно рассчитать, что при стандартном напряжении в 220 В сила тока составит 4,19 А.

Теперь важно понять, что такой ток будет протекать определенный отрезок времени. Примерно он равен чуть менее секунды и зависит от того, как прогревается вольфрамовая нить.

Как только ее температура возрастает, одновременно увеличится сопротивление. В результате сила тока будет многократно ниже первоначальной, пусковой величины.

Если лампу регулярно включать-выключать, то под влиянием токовых скачков со временем она перегорит, не дотянув до номинально установленного срока службы.

Принцип действия

Блоки защиты для плавного включения действуют следующим образом. С их помощью происходит постепенное повышение напряжения, которое поступает к лампе, – с 0 В до, например, 171 В. В этом случае существенно ограничиваются пусковые токи. А лампочки зажигается плавно.

Однако при этом от вас потребуется использование более мощных ламп накаливания, поскольку при снижении питающего напряжения уменьшается световой поток. Хотя срок эксплуатации возрастет.

Каждое продающееся устройство для регулирования включения имеет определенные ограничения по мощности. Поэтому целесообразно заранее выяснить, какие параметры пусковых скачков напряжения в сети. Приобретать надо устройства, имеющие минимальный запас 30% по мощности.

Ну а перегружать такие устройства нельзя – они быстро могут выйти из строя. С увеличением допустимого ограничения возрастают и габаритные характеристики приспособления.

Если вам необходимо приобрести устройство плавного включения ламп, то можно остановить выбор на Uniel Upb-200W-BL, у которого ограничение по мощности составляет 200 Вт. Однако такое приспособление не будет работать с люминесцентными лампами и диммерами.

Неплохим вариантом является УПВЛ Гарант – это простое в монтаже и эксплуатации устройство, отличающееся повышенным качеством исполнения и долговечностью. Для защиты ламп накаливания и галогенных модификаций используется многофункциональное УПВЛ Navigator.

Особенности монтажа

После того, как вы приобрели блок защиты, необходимо определиться с местом и схемой установки. Ведь ошибки на этом этапе могут снизить эффективность всего решения.

Как найти место для установки

Монтировать данное приспособление можно на самых различных участках. Главное требование – не следует закрывать блок отделочными конструкциями. Поэтому не рекомендуется маскировать его гипсокартоном или натяжными полотнами.

Неплохим решением является монтаж устройства на потолке непосредственно возле светильника или у его основания.

Ну а если вы выбрали компактную модификацию, то она вполне может поместиться в подрозетнике выключателя или же в распредкоробке.

Не забывайте, что важно не только обеспечить легкость доступа для тестирования исправности или замены, но и создать условия для охлаждения посредством естественной циркуляции воздуха.

Выбор схемы

Схема плавного включения ламп выбирается наиболее простая, обеспечивающая легкость и надежность эксплуатации. Однако иногда можно использовать интеграционный метод подключения вместе с симистором. Блоки УПВЛ могут заменяться и полевыми транзисторами. Для контроля напряжения в отдельных случаях задействуются автоматические устройства.

При решении задачи подключения ламп 220 В необходимо провод, который идет на блок защиты, подсоединить от фазы перед лампой. Он выполнит роль посредника между лампочкой и кабелем. Блок, таким образом, подключается последовательно к цепи, направленной к лампе.

Важно обеспечить запитку в разрыв провода фазного типа. Это и означает подключение последовательно с выключателем. Если же вы решили применять симистор, то к нему и надо подключать УПВЛ. Сделать это следует параллельно.

В случаях, когда напряжение электропитания светильников составляет 12 В или 24 В, то подключать блок следует до трансформатора понижающего действия. Причем делают это последовательно к его первичной обмотке.

Использование диммеров

Часто применяют контроллер для плавного включения ламп. Такой светорегулятор позволяет также управлять и яркостью освещения. Пользователь может заранее задать нужный режим или управлять включением-выключением при помощи хлопка или пульта. Все зависит от выбранной модели.

Светорегулятор ставится вместо стандартного выключателя. Подключение производится в разрыв фазного кабеля. В таком случае между диммером и нулем будет стоять лампочка, подсоединение к которой оказывается последовательным.

Диммер можно использовать и совместно с выключателем. Его обычно монтируют у двери. В таком случае его место в цепи будет на разрыве фазы и диммера. В некоторых случаях создается возможность регулирования включением люстры из двух мест квартиры. Для этого следует использовать два светорегулятора, которые соединены посредством распредкоробки.

Можно ли изготовить устройство своими руками

Если вы ищете способ изготовить приспособление, обеспечивающее плавное включение лампы, своими руками, то можно предложить такой достаточно простой вариант. Речь идет о тиристорной схеме. Предполагается, что после включения электропитания ток идет через лампу на мост выпрямительного типа. Посредством резистора происходит зарядка электролита.

Как только напряжение достигает заданной величины, происходит открытие порога тиристора. И ток уже движется непосредственно к лампе, что приводит к плавному разогреву вольфрамовой нити.

Существует и иной способ, требующий, однако, покупки специальной микросхемы КР1185ПМ1. Она действует для плавного запуска ламп с мощностью до 150 Вт. В противном случае потребуется силовой симистор.

Устройства для плавного включения ламп позволяют более экономно использовать электроэнергию, обеспечивая и долговечность ламп накаливания. Подключение к цепи не составляет особых сложностей, а сам блок достаточно компактен.

Фото плавного включения ламп

Источник: https://electrikmaster.ru/plavnoe-vklyuchenie-lamp/

Плавный пуск галогенных ламп и ламп накаливания

Можно ли сделать плавный пуск трёхфазного двигателя через блок защиты галогенных ламп?
 

Прогресс не стоит на месте и на смену лампам накаливания приходят энергосберегайки и светодиодные лампы.

Но полностью отказываться от ламп накаливания и галогенок ещё не стоит, так как их спектр в световом диапазоне гораздо шире и более приятен для глаз, чем у энергосберегаек и светодиодных ламп, и их ещё довольно много используется и в частном секторе и в организациях для освещения рабочих мест, каких либо объектов, площадей, охраняемых территорий.

Предыстория

Светодиодные лампы, которые сейчас появляются почти в каждом доме и учреждении, обещают нам экологичность и очень долгий срок службы, как бы большую экономию.
То есть, если старые добрые лампы накаливания служили нам, или должны были служить 1000 часов, то светодиодные должны работать не менее 20 тысяч часов – в 20 раз больше (отсюда и вытекает их высокая стоимость).

Но человечество напрасно разочаровалось в лампах накаливания. В их недолгом сроке службы виновата не технология, а заговор их же производителей.Как известно из истории, первый сговор между производителями ламп накаливания состоялся в 1924 году. Они решили, что слишком хорошие лампы – это плохо.

Лампа будет долго гореть, и новые будут реже покупать.Поэтому было решено искусственно занизить срок их службы ещё в процессе изготовления. Уменьшили длину спирали, уменьшили диаметр подводящих медных проводников внутри колбы лампы, которые идут от держателей спирали до контактов патрона.

Всё, лампы стали работать с перекалом, часто перегорать от небольшого перепада напряжения, особенно в момент их включения. Очень часто даже перегорал тоненький медный проводник внутри лампы, а сама спираль умудрялась оставаться целой.

Этот заговор, в свою очередь, не только позволил бизнесменам продавать худший продукт, чтобы больше заработать, но и стал основой всей современной экономики потребления.Поэтому я очень сильно сомневаюсь в том, что светодиодные лампы, как им положено, отработают свои 20 000 часов.

Они так же “летят” ничуть не реже своих накальных собратьев, и если с экологией ещё понятно, то какой либо экономией тут и не пахнет.

Но вернёмся к лампам накаливания и к галогенным лампам.

Хорошо известно, что галогенные лампы и лампы накаливания в основном перегорают в момент их включения, когда нихромовая спираль находится в холодном состоянии и имеет наименьшее активное сопротивление.

В этот момент через неё будет протекать максимальный ток, особенно тогда, когда включение лампы происходит на пике синусоидальной волны переменного напряжения.

Но можно намного продлить срок службы такой лампы, если нить накаливания разогревать постепенно, в течении нескольких секунд.

Схема

Предлагаемая схема пуска подает напряжение на лампу с плавным нарастанием в течении 2-3 секунд. Это намного уменьшает вероятность перегорания лампы из-за броска тока через холодную нить.

Срок службы галогенных ламп и обычных ламп накаливания, благодаря этой схеме запуска, увеличивается в несколько раз.В эту схему так же введена задержка выключения нагрузки, обеспечивающая плавное уменьшение яркости свечения до полного погасания в течении 8-12 секунд.

То есть при выключении схемы выключателем SA1, яркость свечения ламп начинает плавно убывать до нуля за 8-12 секунд.

Достоинством схемы является ещё и то, что она подсоединяется вместо штатного выключателя или пакетника, нет дефицитных деталей, и для управления лампой (лампами), можно использовать низкоточные малогабаритные выключатели.

Идея собрать такую схему пуска возникла у меня тогда, когда мне надоело довольно часто менять перегоревшие галогенные лампы в люстре. Люстра была рассчитана на шесть маленьких галогенных ламп по 50 Вт каждая.Копаясь в литературе, наткнулся на статью в ВРЛ про сенсорный выключатель на тиратронах МТХ-90.

Схему решил упростить, в результате чего получилась простая схема, которую Вам и предлагаю.

По прошествии времени, я уже и не помню, когда последний раз менял лампу в люстре. Ещё после выключения света, яркость в люстре убывает постепенно в течении 10-12 сек. Свет выключается плавно, как в театре, что тоже довольно приятно.

Конструкция и детали

В первом варианте исполнения схемы запуска, она была собрана на круглой плате, диаметром 50 мм. Плата эта устанавливалась в круглую нишу самого выключателя под ним. Подсоединялась схема на место выключателя, а сам выключатель (его контакты) подсоединялись по схеме на место SA1. То есть сам выключатель исполнял свою же и роль – включал и выключал люстру.

Двухамперный диодный мост от компьютерного БП (KBP206), и тиристор Т10-20-У2 установленные на плате без каких либо радиаторов, вот уже несколько лет исправно пашут на люстру, общей мощностью 300 Вт.

Вначале у меня стояли вместо моста просто четыре одноамперных диода, работали на пределе, два из которых потом пробились, ну и видно от них немного поджарилась плата.

Схема не имеет каких либо особо дефицитных деталей. Тиристоры здесь можно ставить любые, соответствующие только необходимой мощности (току) и напряжению, например ВТ-152, Т106-10-4 и др. Стабилитрон можно применить любой на 10-14 Вольт. Транзисторы так же можно ставить абсолютно любые, лишь бы соответствовали необходимой структуре. Я ставил КТ315 и КТ361, благо ещё имеется их запас.

Мощность схемы, ну и соответственно мощность коммутируемых галогенных ламп, зависит только от примененных в схеме диодного моста и тиристора.

Например, если применить диодный мост на 10 Ампер и тиристор ВТ-152 поставить на небольшой радиатор, то такой схемой запуска можно будет запускать нагрузку до 2-х кВатт, то есть четыре галогенных прожектора по 500 ватт, в несколько раз увеличив ресурс работы их галогенных ламп.

Падение напряжения на самой схеме запуска при выходе её на рабочий режим не превышает единиц Вольт, что абсолютно никак не отражается на яркости ламп, и мощность рассеиваемая на силовых элементах схемы, диодном мосту и тиристоре, будет минимальной.

В следующем варианте схема запуска собрана на плате, размером 40 на 40 мм. Эту плату так же свободно можно устанавливать в нишу обычного выключателя в квартире.

До мощности запускаемых ламп 300-500 Вт, ни тиристор, ни мост нет необходимости ставить на радиатор, так как мощность на них рассеивается только в момент запуска ламп и в момент их выключения.

Для запуска нескольких галогенных прожекторов, или галогенного прожектора с лампой мощностью 1000 Вт и более, тиристор и диодный мост нужно выбирать соответствующей мощности, и может быть потребуется установить на небольшой радиатор.

Схема запуска в этом случае подключается, как и было сказано выше, параллельно контактам пакетника, а в качестве выключателя прожекторов можно использовать любой малогабаритный выключатель, устанавливаемый в любое удобное место.

Рисунок печатной платы в формате Sprint-Layout прилагается.

Печатная плата.

Используемая литература;

Д. Приймак. Сенсорный выключатель освещения // В помощь радиолюбителю выпуск 88, с.63.

 

Источник: http://vprl.ru/publ/istochniki_pitanija/v_domashnjuju_masterskuju/plavnyj_pusk_galogennykh_lamp_i_lamp_nakalivanija/22-1-0-156

Способы защиты устройства плавного пуска

Можно ли сделать плавный пуск трёхфазного двигателя через блок защиты галогенных ламп?

В применении устройств плавного пуска одним из важнейших вопросов является вопрос защиты. Поломки и сбои в работе случаются с любыми устройствами, поэтому необходимо максимально обеспечить сохранность оборудования при нештатных ситуациях.

Вопрос защиты УПП можно рассматривать с двух точек зрения – со стороны двигателя и со стороны самого плавного пускателя.

Защита электродвигателя

Рассмотрим, как и от чего нужно защищать электродвигатель.

Основные проблемы, которым подвержен асинхронный двигатель — механическая перегрузка на валу и пропадание (перекос) фазы. Эти проблемы приводят к перегрузке УПП по току по двум или трем фазам. В обоих случаях, если своевременно не выключить двигатель, через короткое время он перегреется и сгорит.

Повышение нагрузки на валу может быть следствием нескольких причин:

  • Неисправность нагрузки – заклинивание редуктора, ременной передачи, попадание постороннего предмета в движимые механизмы и т.д.).
  • Неисправность двигателя – заклинивание или повышенное трение в подшипниках, перекос и трение ротора об статор.

При перекосе и пропадании фазы происходят явления, приводящие к повышению тока по оставшимся фазам, падению мощности двигателя и его перегреву. На этот случай в устройствах плавного пуска предусмотрена функция отключения двигателя.

Температурная защита электродвигателя

Внутри корпуса двигателя должен быть установлен термоконтакт либо термодатчик, контролирующий нагрев привода.

Термоконтакт имеет нормально замкнутые контакты, которые при повышении температуры размыкаются. Как правило, температура срабатывания составляет 90-150° и не регулируется. Схема управления УПП должна быть построена таким образом, чтобы при срабатывании термоконтакта отключалось питание.

Термодатчик меняет свое сопротивление пропорционально температуре корпуса двигателя. В моделях УПП и преобразователей частоты с большим функционалом имеется аналоговый вход для подключения термодатчика, позволяющего непрерывно мониторить температурный режим. При установленном пороге сначала срабатывает предупреждение о перегреве, затем двигатель отключается.

Необходимо помнить, что термозащита двигателя является вторичной (дублирующей), поскольку для разогрева корпуса двигателя требуется некоторое время. Первичной должна быть защита от превышения тока и короткого замыкания, которая отключает двигатель гораздо быстрее. Подробнее об этом будет сказано ниже.

Защита УПП от проблем со стороны двигателя

В устройствах плавного пуска встречается несколько видов защит:

  • Защита при обрыве выходной фазы. В этом случае на входе УПП имеются все три питающие фазы, а на участке от выходной клеммы до обмотки двигателя фаза по какой-то причине оборвана. Стандартное значение защиты – менее 3 с.
  • Защита при перекосе фаз. Срабатывает при перекосе (отличии) фаз более чем на 50%.
  • Защита от превышения тока при запуске. Запуск – наиболее «тяжелый» период в работе электродвигателя. По этой причине во всех устройствах плавного пуска ограничено количество запусков в течение часа. При большом количестве пусков производители рекомендуют ставить радиатор или выбирать УПП с большей мощностью. Ток при запуске ограничивается, в результате при тяжелых пусках или неправильно выставленном ограничении двигатель может не разогнаться до включения байпаса, либо УПП выдаст ошибку.
  • Защита от перегрузки во время работы. После разгона включается контактор байпаса, и ток на выходе может достигать максимальных значений. Однако он непрерывно измеряется через трансформаторы тока и УПП отключается при достижении установленного значения. Именно эта защита в основном спасает двигатель от перегрузки по току.
  • Защита от короткого замыкания на выходе. Если в двигателе или кабельной линии произошло замыкание, ток повышается до максимально возможного значения, поэтому время выключения УПП должно быть минимальным. Как правило, оно составляет несколько миллисекунд.

Уровень и время срабатывания защит могут быть как фиксированными, так и с возможностью установки пользователем.

Когда срабатывает та или иная защита, пользователю выводится информация об ошибке. После устранения причин и сброса ошибки возможен автоматический (в моделях с повышенным функционалом), либо ручной перезапуск.

Защита УПП от собственных проблем и от проблем со стороны питания

Даже при нормально работающем двигателе могут возникать ситуации, способные вывести из строя устройство плавного пуска. Чтобы избежать подобных неприятностей, пускатели могут оснащаться опциями собственной защиты:

  • Защита при обрыве фазы питания.
  • Защита при перекосе фаз на входе.
  • Защита при повышении/понижении входного напряжения. Уровни напряжения, как правило, фиксированные.
  • Защита от перегрева корпуса УПП. Перегрев может возникнуть из-за повышения температуры внутри электрошкафа, из-за неисправности вентилятора или частых пусков. В случае, если температура будет выше критической, УПП выдаст ошибку.

Внешняя защита УПП

Наличие встроенной защиты не избавляет от необходимости дополнительных мер безопасности на входе УПП. Стандартный вид входной защиты, который рекомендуют все производители – автоматический выключатель. Значение его тока выбирается таким образом, чтобы выключатель надежно срабатывал при перегрузке и коротком замыкании.

В некоторых дешевых моделях УПП отсутствует защита по перегрузке на выходе. В этом случае кроме автоматического выключателя на входе необходимо устанавливать тепловое реле на выходе УПП. Ток реле нужно выставить согласно общим рекомендациям по защите двигателя, а его контакты завести в аварийную цепь либо в цепь останова УПП.

Вместо автоматического выключателя и теплового реле также можно использовать мотор-автомат с плавной регулировкой тока срабатывания, который защитит и от короткого замыкания, и от перегрузки по току.

Стандартная схема включения устройства плавного пуска с защитами приведена ниже.

Автоматический выключатель QF защищает от короткого замыкания и перегрузки по току. Трансформаторы тока Т1, Т2, Т3 на выходе измеряют ток и служат датчиками для правильной работы остальных защит. Выходные контакты 5, 6 замыкаются в случае срабатывания защиты и сигнал об аварии поступает на контроллер или иное устройство.

Заключение

Не стоит забывать, что чрезмерная забота о защите УПП и двигателя может привести к неприятностям с другой стороны, а именно к ложным срабатываниям защиты. В некоторых технологических процессах это может стать причиной простоев и значительных убытков, поэтому установка оптимальной защиты требует большой подготовки, тщательных расчетов, измерений, экспериментальных пусков и проверок.

Другие полезные материалы:
Как выбрать мотор-редуктор
Зачем нужен контактор байпаса в УПП
Назначение сетевых и моторных дросселей
Использование тормозных резисторов с ПЧ

Источник: https://tehprivod.su/poleznaya-informatsiya/sposoby-zashchity-ustroystva-plavnogo-puska.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.