Обзор приборов для измерения сопротивления контура заземления

Содержание

Прибор для измерения сопротивления контура заземления

Обзор приборов для измерения сопротивления контура заземления

Прибор для замера заземления — незаменимое устройство для проверки и обслуживания систем заземляющего контура. Такие аппараты широко применяют не только в процессе эксплуатации установок, но также еще на этапе проектирования и монтажа. С их помощью специалисты проводят геологического измерения сопротивления грунтов в местах запланированного заглубления стержней.

Аналогичным образом производится проверка эффективности молниезащитных схем. После разрушения металлических конструкций сопротивление проводников повышается и они перестают справляться со своей главной задачей — заземлять элементы под напряжением, способные нанести вред человеку и технике путем поражения электрическим током.

Измеритель сопротивления

Что это такое

Сопротивление заземления представляет собой физический показатель величины противодействия грунта растеканию пагубного электрического тока. Избыточное напряжение уходит в грунт через специальные стержни, соединенные по особой схеме. Проверку проводят в омах.

Обратите внимание! Идеальным показателем является минимальное значение, то есть чем он ниже, тем больше электрического тока защитный контур сможет пропустить через себя.

Однако достичь идеальных величин практически невозможно. Нулевой показатель гарантирует полное поглощение грунтом избытка электронов. Но поскольку добиться в реальности благоприятных условий практически не представляется возможным, то разработаны специальные нормы для разных видов зданий.

Замер сопротивления

Номинальные величины получены расчетным и опытным путем, поэтому считаются оптимальными для создания защитного контура от излишков напряжения. Для бытовой электросети с вольтажом 220В и 380В сопротивление заземляющей периферии не может превышать 30 Ом.

В противном случае, это чревато воспламенением проводки, выводом из строя домашнего оборудования и поражением окружающих электрическим током.

Если в помещениях используется силовые установки, например, электронагреватели или сервоприводы, то значение не должно быть больше 10 Ом.

Для чего необходимо измерять заземление

Принцип работы защитных контуров заземления основан на главном качестве электрического потока электронов — проходить по проводникам с наименьшей силой противодействия. Сопротивление тела человека в среднем равно 1 кОм. В соответствии с правилами обустройства электроустановок номинальная величина резистентности заземления не может превышать этого показателя. По нормам допустимо 4 Ом.

цель защитной периферии — отвести накопленные потенциалы от организма человека и не допустить поражения.

На корпусе неисправного оборудования, например, в результате пробоя изоляции, скапливаются отрицательные электроны, которым готовы пройти через любой материал. При касании рукой кожуха они устремляются в землю через его тело.

Если величина тока невелика, то человек сможет отделаться лишь неприятным ощущением и током, но при высоких токах более 100 мА напряжение может вызывать необратимые изменения в организме.

Зачем нужно проверять заземление

Обратите внимание! Заземление способно свести риск поражения до минимальных пределов. Ток пойдет по материалам с сопротивлением меньше человеческого.

По этой причине необходимо регулярно проверять защитный контур на соответствие установленным нормам. Такая простая превентивная мера помогает избежать травм и летального исхода. В случае когда прибор для измерения номиналов сопротивления заземления показывает превышение расчетных значений, необходимо вмешательство специалистов, которые способны починить и привести в порядок защитный контур.

Условия для измерения

При проведении замеров сопротивления заземления используют методику определения падения вольтажа, амперов. Через проводник пропускают ток необходимой силы и фиксируют изменение. Далее по формуле вычисляют коэффициент противодействия, который равен частному тока на падение напряжения. Такой способ называют методом амперметра-вольтметра.

В качестве измерителя используют обычные бытовые приборы как мультиметр. Для этого создают искусственную цепь из токового (вспомогательного) электрода и заземлителя (потенциального стержня).

Таким элементом может выступать обрезок арматуры или металлической трубы. Через них пропускают электричество требуемой величины.

В качестве генератора может выступать сварочный аппарат или другие трансформаторы, чьи обмотки не связаны между собой.

Важно! Необходимо создать ток нужной величины, способный преодолеть сопротивление грунта.

Потенциальный электрод нужен для фиксации падения напряжения при протекании тока по заземляющему элементу. Его располагают на одинаковом расстоянии от токового электрода и контрольного элемента, но он должен находится в доступной зоне нулевого потенциала. Далее путем расчетов по закону Ома определяют геологическое сопротивление грунта.

Такой способ хорош для применения в частном доме, но бытовой мультиметр не способен вырабатывать необходимое напряжение. А схема будет работать, если по цепи потечет только ток нужного номинала. Поэтому существуют специализированные приборы, которые способны дать точные результаты.

Выше был описан простой способ, состоящий из одного потенциального электрода. Существует также сложный метод, включающий в себя несколько клиньев связанных между собой в одну единую цепь. Проволока между ними формирует контур.

Схема измерения сопротивления

Приборы

Как уже было сказано выше, для профессиональных измерений многофункциональные тестеры не сильно подходят, так как дают примерные результаты и не способны генерировать напряжение требуемой величины. Для получения точных показателей используют хорошо известные М-416, МС-08 и другие современные устройства.

Приборы делятся на:

Принцип действия индукционных тестеров основан на компенсационной методике. Их отличает надежность и долговечность. Однако существенным минусом таких аппаратов является недостаточная точность шкалы делений.

Они обладают устойчивостью к внешним помехам и просты в эксплуатации. Сам процесс калибровки прибора основан на выставлении абсолютного нуля сопротивления.

Подобные аппараты рассчитаны на работу с номиналами от 0,1 до 1500 Ом.

Электронные тестеры превосходят аналоговые по точности и функциональности. Но при наличии электроники внутри они чувствительны к вешним помехам, которые могут не только повлиять на конечные результаты замеров, но также испортить сам прибор.

Поэтому они требуют более бережного и аккуратного обращения с собой. Класс точности электронных тестеров гораздо выше, чем у индукционных. Приборы показывают результаты вплоть до десятых и сотых единиц, что в некоторых случаях очень важно.

Тестер М-416

М-416

Измеритель марки М-416 предназначен для снятие показаний от 0,1 Ом до 1 кОм. Рабочее напряжение от источников питания прибора варьирует от 3,8 В до 4,5 В. Поскольку индикатор является стрелочным, то для устройства важно сохранять горизонтальность.

Поэтому перед началом тестирования необходимо поместить на ровную поверхность. Далее выставить переключатель в позицию 5 Ом и с помощью рукояти реохорда приблизить стрелку как можно ближе к нулевой отметке. При этом шкала реохорда должна точно показывать отметку измерений равной 5 Ом.

Допускаются отклонения 0,35 единиц.

По окончанию калибровки контур отсоединяют от заземляющих проводников. Во время проверки прибор требуется располагать рядом с контрольным заземлителем. Это поможет уменьшить погрешность измерений, вызванное переходящим сопротивлением. Стержень вспомогательного заземлителя и зонда устанавливают на расстоянии 10 и 20 метров. Погружать стержни требуется на глубину от 500 мм.

Забивать их нужно ровными и четкими ударами, чтобы исключить раскачивания. Это также поможет исключить дополнительную погрешность переходных сопротивлений между грунтом и металлом. Для грунтов с высокими показателями прибор покажет приблизительные результаты. Для повышения точности и снижения погрешности область вокруг стержней поливают водой.

Прибор ИС-10

ИС-10

Электронный прибор ИС-10 предназначен для проверки сопротивления конструкций заземления и металлических соединений по схеме 2х, 3х и 4х при помощи щупов.

Для измерения удельных величин сопротивления грунтов устройство позволяет вводить данные о расстоянии между контрольными электродами. Диапазон дистанций составляет от 1 до 10 метров.

Оператор имеет возможность самостоятельно внести их в меню прибора. С учетом введенных параметров результат отображается на экране как 1 Ом на 1 метр.

Прибор позволяет работать с током 250 мА и частотой 124 Гц. С помощью рукояти пользователь регулирует номинальные значения, с которыми намерен работать: 1 до 999 мОм, от 1 до 9 Ом, от 10 до 99 Ом, от 100 до 999 Ом и от 1 кОм до 9 кОм. Точность показаний составляет сотые доли единиц при погрешности 3%.

В отличие от М-416 тестер ИС-10 имеет жидкокристаллический монохромный экран. Электронная начинка прибора оснащена встроенной памятью, куда сохраняются до 64 результатов замеров.

Присутствует защитная схема от неверного подключения, которая не позволит перегореть ему при высоких токах, в то числе защита от внезапного появления напряжения.

Корпус устройства ударопрочный и соответствует степени защищенности от пыли, влаги и ударов IP42.

Измеритель СА 6412

СА 6412

Тестер СА 6412 представляет собой новое поколение измерительных семейства токовых клещей. Корпус устройства изготовлен из специального материала, который позволяет эксплуатировать его в неблагоприятных условиях.

Каждая деталь проверочной головки помещена в закрытый кожух, что обеспечивает им необходимую прочность при работе на сложных объектах.

Производитель оснастил прибор дополнительной защитой от сильных вибраций, ударов, попадания влаги и пыли.

Исполнение устройство очень простое. Для работы ему не нужны провода, щупы как вышеописанным устройствам. Для проведения испытаний не требуется установка дополнительных электродов. Диапазон замеров составляет от 0.1 до 1200 Ом при величине тока от 1 мА до 30 Ампер.

Полученные результаты аппарат выводит на монохромный жидкокристаллический экран. Устройство оснащено функцией самостоятельного тестирования и индикацией помех в сети. Выдерживает ток перегрузок до 200 А в течение 30 секунд и имеет диэлектрическую прочность 2500 В.

Тестер 1820 ER

1820 ER

Портативный прибор для измерения сопротивления заземления марки 1820 ER позволяет мерить шаговое напряжение. Устройство позволяет не отключать схему контура при работе с тестовым током 2 мА. В комплект входят щупы и шнуры. Пределы измерений регулируются рукоятью и составляют 20, 200 и 2000 Ом.

Погрешность показаний не превышает 2%. Точность составляет 0,01 для 20 Ом, для 200 соответствует 0,1 Ом и для 2000 допуск 1Ом. Тестовый сигнал равен 2 мА частотой 820 Гц. Для тестирования заземляющего контура также используют электроды, которые вбивают в землю на определенное расстояние. Схема их расположения может быть простой или сложной, то есть с использованием нескольких штырей.

Измерительный прибор SEW 2705 ER

SEW 2705 ER

Переносной прибор SEW 2705 ER для измерения грунтового сопротивления до 1 кОм. Двухпроводная схема замеров представляет грубые результаты, трехпроводная дает более точные показатели. Поэтому позволяет проверить шаговое напряжение до 30 В.

При тестовом токе до 2 мА отключение цепи защитного заземления от сети силового напряжения не требуется. В конструкции данного прибора использован стрелочный индикатор.

Погрешность показаний не превышает 2,5%. Пределы проверки сопротивления равны 10. 100 и 1000 Ом, для напряжения 30 В частотой 40-500 Гц.

Корпус прибора ударопрочный и влагозащищенный, выполнен в соответствии с современными стандартами.

Как правильно измерять

Перед выполнением замеров необходимо уменьшить число факторов, влияющих на точность конечных результатов.

Для аналоговых приборов со стрелочным индикатором это, прежде всего, горизонтальное расположение корпуса.

На величину погрешности влияет также близость электромагнитных полей, поэтому ставить аппараты следует как можно дальше от них. Такое требование следует соблюдать для всех видов измерителей.

До начала тестирования всегда нужно проводить калибровку прибора. На индукционных это можно сделать путем поворота рукояти реохорда. Некоторые электронные устройства имеют функцию самостоятельного тестирования, поэтому они автоматически проведут точную подстройку под рабочие условия. Точные результаты дает схема тестирования с четырьмя проводами.

Источник: https://rusenergetics.ru/instrumenty/izmeritel-soprotivleniya-zazemleniya

Прибор для замера сопротивления контура заземления

Обзор приборов для измерения сопротивления контура заземления

Защитное заземление существенно повышает безопасность людей, проживающих в квартире или частном доме, а также работников предприятий, связанных с электроустановками и оборудованием.

Данные системы разрабатываются и создаются квалифицированными специалистами, а в определенных условиях могут быть устроены и собственными силами.

Каждая конструкция должна соответствовать определенным требованиям, в зависимости от предназначения и условий эксплуатации.

Чаще всего приходится решать задачу, как измерить сопротивление заземления, поскольку от этого параметра во многом зависит работоспособность всей системы. Его величина не должна превышать установленного максимального предела, определяемого Правилами устройства электроустановок, в противном случае защита не сможет в полной мере выполнять свои функции.

Как работают заземляющие системы

Действие защитных заземляющих систем основано на свойстве электрического тока, в соответствии с которым он стремится течь по проводникам, обладающим минимальным сопротивлением.

Человеческое тело относится к категории хороших проводников, его сопротивление условно считается 1000 Ом. Следовательно, для того чтобы ток уходил в сторону заземления, его сопротивление должно быть намного меньше, чем у человека.

В соответствии с ПУЭ данное значение не превышает 4 Ом.

В случае неисправности какого-либо электрического прибора, например, из-за пробоя изоляции, на его корпус попадает ток, то есть, в этом месте появляется потенциал.

В случае касания рукой этой части, ток пойдет в землю по направлению от руки-через тело-в сторону ноги. В таких случаях человек подвергается смертельной опасности, поскольку даже 100 мА могут привести к необратимым процессам.

Установка защитного заземления, измеряемого в дальнейшем, дает возможность максимально снизить вероятность негативных последствий.

Каждый современный электрический прибор оборудуется внутренним заземлением, когда отдельный контакт вилки соединяется с корпусом. При включении такого прибора в розетку, получается соединение с общей системой заземления.

В случае какого-то нарушения или повреждения, ток утечки буде уходить в землю через заземляющий провод с небольшим сопротивлением.

Поэтому замеры сопротивления имеют большое значение, позволяя контролировать его величину и не допускать выхода за пределы установленных значений.

Для чего нужны проверки заземления

Для того чтобы заземление в полной мере выполняло свои функции, необходимо поддерживать исправность заземляющего контура. С этой целью выполняются периодические замеры сопротивления мультиметром, по результатам которых определяется состояние всей системы.

Если контур находится в исправном состоянии, то при возникновении аварийной ситуации ток по заземляющему проводнику будет уходить к токоотводящим электродам. Поскольку они контактируют с грунтом всей своей поверхностью, все проходящие токи быстро и равномерно уйдут в землю.

Однако, продолжительное нахождение в грунте и постоянный контакт с землей приводит к образованию на металлических поверхностях окисной пленки, постепенно переходящей в коррозию.

В результате, создаются препятствия нормальному прохождению тока, сопротивление элементов конструкции возрастает.

На некоторых участках ржавчина становится более ярко выраженной, в связи с наличием в этих местах химически активных веществ, постоянно контактирующих с металлом. Поэтому начинать проверку следует с определения технического состояния элементов системы.

Постепенно коррозия превращается в отдельные чешуйки, которые начинают отслаиваться от металла и препятствовать в этом месте электрическому контакту.

В дальнейшем количество таких мест возрастает, вызывая увеличение сопротивления всего контура.

В заземляющем устройстве наступает потеря электрической проводимости, и оно уже не в полной мере отводит в землю опасные токи. Таким образом, снижаются общие защитные свойства системы.

Установить реальное состояние контура возможно только с помощью замера сопротивления. Техническая сторона этого процесса основывается на законе Ома для участка цепи.

Данная процедура проводится с помощью источника напряжения с заранее известным точным значением. После того как будет измерена сила тока, можно легко определить сопротивление.

На практике все не так просто, как в теории, поскольку существуют определенные методики и правила замеров, которые требуют точного соблюдения.

Общие правила проведения замеров сопротивления

Стандартная проверка заземления включает в себя следующие методы:

  • Визуально проверяются болтовые и сварные соединения.
  • Проводятся замеры сопротивления контура заземления мультиметром.
  • Проверяется удельное сопротивление грунта.

Все измерения выполняются с помощью специальных приборов. Рекомендуется пользоваться мегомметрами, которые больше всего подходят для этих целей.

Существует специальный прибор М-416 переносного типа, работающий на основе компенсационного метода с использованием потенциального электрода и вспомогательного заземлителя.

Нижний и верхний пределы измерений составляют 0,1-1000 Ом, температурный диапазон – от минус 25 до плюс 600С. Питание прибора осуществляется тремя батарейками по 1,5В.

Измерение сопротивления заземления осуществляется в следующем порядке:

  • Прибор нужно установить на ровную горизонтальную поверхность и откалибровать. С этой целью в режиме контроля нажимается красная кнопка, затем она удерживается, а стрелка устанавливается в нулевое положение. Измерительное устройство нужно расположить максимально близко к заземлителю, поскольку соединительные провода сами обладают некоторым сопротивлением.
  • Перед тем как проверить сопротивление, выбирается требуемая схема подключения. Она может быть трех- или четырехзажимной, обозначенной на крышке прибора.
  • В землю забивается стержень зонда и вспомогательный электрод на глубину не ниже 50 см. Грунт должен иметь естественную плотность и не быть насыпным, а удары наносятся кувалдой точными прямыми ударами.
  • Место подключения заземляющего проводника к электроду зачищается от старой краски. Сечение медных проводов составляет 1,5 мм2.
  • Непосредственное измерение защитных устройств начинается с выбора диапазона х1. После нажатия на красную кнопку нужно вращать ручку, чтобы установить стрелку на нулевое значение. Большие значения сопротивлений измеряются в соответствующих диапазонах х5 или х20. Для замеров заземления вполне достаточно диапазона х1, который и выдаст требуемое сопротивление на шкале прибора. Измерения должны выполняться при определенной погоде с максимальной плотностью грунта.

Аналогичные замеры проводятся и в зимнее время при сильных морозах при сильно замороженном грунте. Не рекомендуется измерять сопротивление при влажной погоде, поскольку полученные данные будут сильно искажаться.

Измерения амперметром и вольтметром

Во время проведения замеров оценивается контактная поверхность контура, поскольку именно она плотно соприкасается с землей.

Для того что бы измерить заземление, на расстоянии примерно 20 м от защитного устройства в грунт забиваются основной и дополнительный электроды. Затем к ним подается переменный ток со стабильными показателями.

В результате, образуется электрическая цепь, состоящая из источника напряжения, проводов и электродов, по которой будет протекать ток. Его величина измеряется амперметром, а не мультиметром.

Поверхность заземляющего контура и контакт основного электрода перед тем, как их померить тщательно очищаются от металла, после чего к ним подключается вольтметр и на этом участке измеряется падение напряжения.

Полученное значение следует разделить на силу тока, измеренную амперметром, в результате получится сопротивление на данном участке цепи.

Если требуются неточные грубые замеры заземлителей, можно вполне ограничиться этими полученными данными.

Более точные результаты получаются путем корректировки, когда из полученного значения отнимается сопротивление соединительных проводов. Одновременно учитываются диэлектрические свойства грунта и их воздействие на токи растекания внутри почвенной структуры.

Более качественно замерить сопротивление заземления могут только квалифицированные специалисты, использующие современную усовершенствованную технологию. При их выполнении применяются промышленные высокоточные метрологические приборы, а также основной и вспомогательный электроды, помещаемые в почву, как и при замерах предыдущим способом.

Они устанавливаются на одной линии, с интервалом от 10 до 20 метров, охватывая измеряемый заземляющий контур. Шина контура соединяется с измерительным зондом максимально короткими проводниками. Сам прибор для измерения через клеммы соединяется с основным и дополнительным электродами, находящимися в земле.

Подача переменной ЭДС осуществляется через вспомогательный электрод, находящийся в грунте. В эту же цепочку входит сама земля, соединительные проводники и первичная обмотка трансформатора тока, обозначенного на рисунке символами ТТ.

В результате, на вторичной обмотке трансформатора возникает ток I1. С помощью специального реостата – реохорда выставляются равные напряжения, то есть, U1 = U2.

Подобное равенство достигается за счет установки нулевого значения показаний измерительного устройства V, соединенного с реохордом через измерительный трансформатор ИТ.

Источник: https://1000eletric.com/pribor-dlya-zamera-soprotivleniya-kontura-zazemleniya/

Измерение сопротивления заземления

Обзор приборов для измерения сопротивления контура заземления

Заземление – это намеренное соединение частей и узлов электрооборудования, не находящихся в нормальном состоянии под напряжением с электродом, установленном в земле. При этом необходимо обозначить такое понятие как сопротивления растеканию.

При замыкании на землю, по мере удаления от электрода потенциал будет падать и, в конце концов, станет нулевым. Таким образом, сопротивление растеканию заземлителя – это параметр характеризующий сопротивление земли в месте установки электрода. Понятие сопротивления растеканию особенно актуально в сетях выше 1000 В.

Для чего нужно заземление

Заземление необходимо для предотвращения поражения человека воздействием электрического тока, в случае его появления там, где при нормальных условиях его не должно быть. При касании корпуса прибора, находящимся под напряжением, сила тока, проходящего через тело человека, может оказаться смертельной.

Необходимостью снижения разности потенциалов и обусловлено применение защитного заземления. Кроме этого, замыкание на землю приводит к увеличению силы тока и, как следствие, к срабатыванию защитных устройств. Нормы сопротивления защитного заземления регламентируются ПУЭ, а также документом называемым «Правила и нормы испытания электрооборудования».

Конструкция заземления

Заземление – это комплекс технических устройств защитного типа, состоящий из:

  1. Заземлителя — одного или нескольких вертикальных проводников (стержней), имеющих электрический контакт с землей и связанных между собой.
  2. Заземляющего проводника (путь для тока замыкания), соединяющего заземляемый объект и заземлитель.

На каждое заземление составляется паспорт. В паспорт заносится схема заземляющего устройства (длина, и схема расположения электродов контура), тип, удельное сопротивление грунта, а также результаты замера сопротивления заземления.

Обязательным приложением к паспорту является акт на скрытые работы. Данный акт необходим в связи с тем, что большая часть заземляющего устройства находится под землей и этот акт представляет собой схему расположения элементов заземляющего устройства.

В случае, если паспорт на заземление отсутствует, эксплуатация объекта запрещена.

Методика измерения сопротивления защитного заземления

Для проверки сопротивления заземления используется метод амперметра-вольтметра, заключающийся в том, что через измеряемое сопротивление течет ток определенной величины и одновременно измеряется падение напряжения. Разделив значение тока на величину падения напряжения, получаем значение сопротивления.

В принципе, под понятием измерения сопротивления заземления, подразумевается измерение сопротивления растеканию. Правила и нормы испытаний электрооборудования задают минимальное сопротивление заземления, рассчитанные с точки зрения безопасности. Нормы различаются в зависимости от типов электроустановок (глухозаземленная или изолированной нейтралью).

Класс использованного напряжения также влияет на нормы сопротивления.

Приборы для измерения заземления

Бытовой тестер для такой проверки использовать нельзя, так как он не способен генерировать достаточно высокое напряжение. Для измерений используется, как приборы уже давно выпускающиеся (МС-08, М-416 и др.

), так и новые средства измерения, выполненные на современной электронной базе и характеризующиеся малым потреблением тока от источника питания.

В настоящее время измерение защитного заземления можно выполнить также цифровым мультиметром или специальным тестером.

Порядок проведения измерения заземления (сопротивления растеканию заземлителя)

Для проведения проверки необходимо помимо прибора иметь два электрода (токовый и потенциальный) с проводами достаточной длины, как образец, можно предложить отрезок гладкой арматуры или трубы круглого сечения.
В зависимости от сложности конструкции заземлителя, измерение сопротивления проводят по двум разным схемам:

  1. Простой (одиночный) заземлитель.
    Применяется «линейная» схема подключения электродов. Потенциальный электрод устанавливают  на расстоянии не менее 20 м. от заземлителя, а токовый не менее, чем в 10-12 м. от потенциального.
  2. Сложный заземлитель.
    Используется, когда простая схема неприменима, ввиду того, что при расчетах сопротивление заземления она не будет соответствовать минимально допустимым нормам. Представляет собой несколько вертикальных стержней вбитых в землю, электрически связанных между собой (электросваркой, чтобы снизить переходное сопротивление). Такое устройство называется контуром заземления. В этом случае необходимо определить наибольшее расстояние (диагональ) защитного контура заземления. Потенциальный электрод нужно вбивать на расстоянии равным пяти диагоналям от места присоединения заземляющего проводника. Токовый зонд забивается не менее, чем в 20 м. от потенциального. Измерительный прибор необходимо располагать как можно ближе к выводу заземления.

Порядок проведения измерений

Так как в настоящее время самый распространенный прибор для проведения измерения является измеритель сопротивления заземления М-416, в дальнейшем, как образец, будет рассматриваться именно это средство измерений.

Данный прибор относится к системе, в которой принцип измерений основан на компенсационном методе.

Запрещается для проверки пользоваться приборами, не имеющих действующего клейма о поверке, результаты которой должны заноситься в паспорт на средство измерения.

  1. Проверить наличие элементов питания в батарейном отсеке, убедившись, что их напряжение находится в пределах нормы;
  2. Откалибровать прибор, установив переключатель диапазонов в положение 5 Ом (контроль), ручкой реохорда установить стрелку как можно ближе к нулевой отметке. При этом на шкале должны быть показания 5 Ом;
  3. Отсоединить контур от заземляющего проводника;
  4. Присоединить прибор к соответствующим электродам;
  5. Тщательно зачистив вывод измеряемого заземлителя (для того чтобы исключить влияние, которое может оказать на конечный результат переходное сопротивление), присоединить к нему прибор.

Примечание: В зависимости от планируемых показателей сопротивления заземления измерение прибор нужно подключать по двух- или четырехпроводной схеме.

Первая применяется, если предполагаемое сопротивление более 5 Ом, а вторая для измерения более низких значений (при этом разделяются пути прохождения тока и измерения разности потенциалов, для исключения влияния сопротивления присоединяемых проводов при измерении).

В этом случае присоединение к заземлителю осуществляется двумя проводниками. Паспорт прибора содержит наглядные рисунки, которые позволят произвести подключения без ошибок.

  1. Установить переключатель диапазонов в положение, соответствующее наибольшей чувствительности (Х1), нажав кнопку «Измерение», регулятором установить стрелку на нуль. При этом на шкале реохорда будет отражен искомый результат проверки сопротивления заземлителя. Если стрелка не устанавливается на нуль, необходимо переключателем выбрать другой диапазон и показания реохорда умножить на соответствующий множитель.

Примечание: Если измерение проводится тестером или мультиметром, необходимость выбора множителя отпадает — эти приборы обладают функцией автоматического выбора предела шкалы.
ВАЖНО! После проведения измерений, если сопротивление заземления в пределах нормы необходимо вновь присоединить заземляющий проводник к заземлителю!

Оформление результатов измерений (протокол)

После окончания измерений нужно оформить протокол результата замера. Протокол представляет собой бланк определенной формы, в котором отражаются наименование объекта, схема установки заземляющих стержней и их соединений (для этого понадобится паспорт объекта и акт на скрытые работы).

Также протокол должен отражать схему контура заземления и метод, по которому проводилось измерение. В протокол необходимо включить графу, в которой указан прибор или тестер (его тип, заводской номер и пр.), которым проводилось испытание.

Результаты, полученные при измерении, заносятся в паспорт заземляющего устройства.
Отдельно представляется протокол испытания переходных сопротивлений. Переходное сопротивление (также, его еще называют металлосвязью) – это возможные потери на пути прохождения тока, связанные со сварочными, болтовыми и др.

соединениями всего контура заземления. Это испытание проводится специальным тестером – микроомметром.

ВАЖНО! Проводить испытания и выдавать протокол измерения сопротивления заземления может только испытательная лаборатория, аккредитованная в системе органов стандартизации.
После окончания измерений составляется соответствующий акт, и заземляющее устройство считается годным к эксплуатации.

Источник: http://electry.ru/zazemlenie/izmerenie-soprotivleniya-zazemleniya.html

Обзор приборов для измерения сопротивления контура заземления

Заземляющий контур является основным и неотъемлемым устройством защиты человека от удара током, во время выхода электроприбора из строя или пробоя изоляции.

Для того чтобы контролировать состояние заземлителя, необходимо проводить периодические замеры, поскольку металлические части в земле подвержены коррозии.

При разрушении металлических частей сопротивление контура падает и он прекращает выполнять свою защитную функцию. В данной статье мы рассмотрим приборы для измерения сопротивления заземления.

Обзор приборов

Измеритель Ф4103-М1 делает проверку контура любых геометрических форм и размеров. Внешний вид устройства показан на фото:

Технические характеристики указаны в таблице:

Следующий в нашем обзоре — измеритель непосредственного отсчета определения активного сопротивления М416. Прибор проверенный временем, обладает высокой точностью и стабильностью. Вот так он выглядит:

Основные технические данные:

Проведение измерительных работ с помощью м416 показано на видео:

Современный микропроцессорный измерительный прибор ИС-10 следующий в нашем обзоре. ЖК дисплей, автоматический диапазон измерений, встроенная память последних сорока замеров. Ударопрочный корпус с защитой IP42. Ознакомится с внешним видом можно на фото ниже:

Аппарат предназначен для замеров и тестирования элементов заземления двух-, трех-, четырехпроводным методом. Также с его помощью может быть выполнена проверка качества соединения проводников шины заземления и т.д.

Инструкция по эксплуатации более усовершенствованного измерителя ИС-20/1 демонстрируется на видео:

Ну и завершает наш список приборов для измерения сопротивления контура заземления — профессиональный аппарат MRU-101. Устройство может измерять удельное сопротивление грунта, подстраиваться под конкретную задачу, с помощью анализа и сбора данных. MRU-101 имеет память на последние четыреста замеров. Внешний вид измерителя:

Основные технические характеристики данного устройства:

Принцип работы измерителей

Измерение сопротивления грунта происходит по классическому закону Ома (R=U/I). Источник напряжения в устройстве подает разность потенциалов на электроды и происходит замер тока через прибор. Получив данные измеритель производит вычисление и выводит результат. На схеме ниже представлена схема замера:

Большинство измерений происходит по этому методу или близкие к данному принципу. Следуя инструкции к имеющемуся у вас в наличии прибору нужно установить измерительные электроды разнося их от основного заземления.

Работы производят в течении пару минут, за это время показания устанавливаются. Данную процедуру производят для каждого заземлителя отдельно. Более подробно узнать о том, как проводят замеры сопротивления заземляющего устройства. вы можете из нашей статьи.

Напоследок рекомендуем просмотреть видео, на котором наглядно показывается, как проводятся измерения одним из рассматриваемых нами аппаратом — Ф4103-М1:

Вот мы и рассмотрели основные приборы для измерения сопротивления заземления. Надеемся, предоставленная информация была для вас полезной!

Рекомендуем также прочитать:

Способы измерения сопротивления заземления, используемые приборы

В основе безопасности использования электроэнергии лежит не только и не столько соблюдение всех норм при монтаже электроустановки, но и следование требованиям по ее эксплуатации, заложенным в нормативных документах. Заземляющий контур жилых домов и зданий требует периодического выполнения контрольных измерений и выявления неисправности. Расскажем в статье, как происходит измерение сопротивления заземления, какими способами.

Принцип работы заземляющего устройства

В обычных условиях контур заземления, соединенный посредством РЕ-проводника с системой выравнивания потенциалов и с корпусом каждого находящегося в здании электроприбора, бездействует: кроме незначительных по величине фоновых, токи по нему не идут.

При нарушении изоляции электропроводки и аварийной ситуации на поверхности корпуса поврежденного электроприбора образуется опасное напряжение, которое по контуру заземления переходит на потенциал земли.

Благодаря этому величина напряжения, попавшего на непроводящие элементы, снижается до абсолютно неопасного значения, не способного нанести травму соприкасающегося с корпусом поврежденного прибора через землю человеку.

При нарушении контура заземления либо РЕ-проводника пути для отвода напряжения нет, и ток будет протекать сквозь тело человека, находящегося между землей и потенциалами неисправного бытового электроприбора.

Источник: https://electricremont.ru/pribor-dlya-izmereniya-soprotivleniya-kontura-zazemleniya.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.