Правильный выбор трансформатора тока для счетчика

Содержание

Правильный выбор трансформатора тока для счетчика

Правильный выбор трансформатора тока для счетчика
При организации электроснабжения предприятий, жилых и коммерческих объектов, в тех случаях, когда суммарный ток нагрузки многократно превышает возможности узла учета, или же необходимо произвести учет электроэнергии высоковольтных потребителей, устанавливаются дополнительные узлы преобразования — трансформаторы тока (ТТ) и напряжения (ТН).

Они позволяют произвести линейное преобразование и осуществить учет или контроль проходящего тока с помощью обычных однофазных или трехфазных электросчетчиков, амперметров, а также организовать систему защиты линии с помощью них. В этой статье мы узнаем как выбрать трансформатор тока для счетчика электроэнергии по мощности и другим параметрам.

Разновидность устройств

При выборе трансформатора нужно учитывать его место расположение (закрытые или открытые распределительные установки, встраиваемые системы), а также конструктивные особенности исполнения (проходные, шинные, опорные, разъемные).

Проходной ТТ устанавливают в комплексных РУ и используют в качестве проходного изолятора. Опорные используют для установки на ровной поверхности. Шинный ТТ устанавливается непосредственно на токоведущие части.

В роли первичной обмотки трансформатора выступает участок шины. Встроенные модели как элемент конструкции, устанавливаются в силовые трансформаторы, масляные выключатели и пр.

Разъемные ТТ выполнены разборными для быстрой установки на жилы кабеля, без физического вмешательства в целостность электрических сетей.

Кроме того, разделение также проходит по типу используемой изоляции:

  • литая;
  • пластмассовый корпус;
  • твердая;
  • вязкая компаудная;
  • маслонаполненная;
  • газонаполненная;
  • смешанная масло-бумажная.

И различают по спецификации и сфере применения:

  • коммерческий учет и измерения;
  • защита систем электроснабжения;
  • измерения текущих параметров;
  • контроль и фиксация действующих значений;

Также различаются трансформаторы по напряжению: для электроустановок до 1000 Вольт и выше.

Правила выбора

При выборе трансформатора его напряжение не должно быть меньшим, чем номинальное напряжение счетчика.

U ном ≥ U уст

Аналогично поступаем при выборе ТТ по току, который должен быть равен или больше максимального тока контролируемой установки. С учетом аварийных режимов работы.

 I ном ≥ I макс.уст

В ПУЭ описаны правила и нормативные требования к устройствам коммерческого учета счетчиками, а также уделено не мало внимания трансформаторам тока и нормам расчетных мощностей. Детально ознакомится можно в пункте ПУЭ 1.5.1 (Глава 1.5).

Помимо этого существуют следующие правила выбора трансформатора тока для счетчика:

  1. Длина и сечение проводников от ТТ к узлу учета должны обеспечивать минимальную потерю напряжения (не более 0.25% для класса точности 0.5 и 0.5% для трансформаторов точностью 1.0). Для счетчиков, используемых для технического учета, допускается падение напряжения 1.5% от номинального.
  2. Для систем АИИС КУЭ трансформаторы должны иметь высокий класс точности. Для установки в такие системы используют ТТ класса S 0.5S и 0.2S, позволяя увеличить точность учета при минимальных первичных токах.
  3. Для коммерческого учета нужно выбрать класс точности ТТ не более 0.5. При использовании счетчика точностью 2.0 и для технического учета, допускается применение трансформатора класса 1.0.
  4. Выбор ТТ с завышенной трансформацией допускается, если при максимуме тока нагрузки, ток в трансформаторе не меньше 40% от I ном электросчетчика.
  5. При расчете количества потребленной энергии необходимо учитывать коэффициент преобразования.
  6. Расчет параметров ТТ производится в зависимости от сечения проводника и расчетной мощности.

Пример расчета:

По таблице ниже, согласно получившимся расчетным параметрам выбираем ближайший ТТ:

При заключении договора с энергоснабжающей организацией, в случае когда для производства учета необходима установка трансформаторов тока, для организации узла учета, выдаются технические условия, в которых указано модель узла учета а также тип ТТ, номинал автоматических выключателей место их установки для конкретной организации. В результате самостоятельные расчеты ТТ производить не нужно.

Напоследок советуем читателям https://samelectrik.ru просмотреть полезное видео по теме:

Надеемся, теперь вам стало понятно, как выбрать трансформаторы тока для счетчиков и какие варианты исполнения ТТ бывают. Надеемся, предоставленная информация была для вас полезной и интересной!

Наверняка вы не знаете:

Источник: https://samelectrik.ru/pravilnyj-vybor-transformatora-toka-dlya-schetchika.html

Подключение счетчика через трансформаторы

Правильный выбор трансформатора тока для счетчика

Схемы подключения счетчиков через трансформаторы можно разделить на две группы: полукосвенного и косвенного включения.

При схеме полукосвенного включения, счетчик включается в сеть только через трансформаторы тока (ТТ). Такая схема, как правило, применяется для средних и крупных предприятий которые питаются от сети 0,4кВ и имеют присоединенную нагрузку свыше 100 Ампер.

При схеме косвенного включения, счетчик включается в сеть через трансформаторы тока (ТТ) и трансформаторы напряжения (ТН). Такие схемы применяются, как правило, для крупных предприятий имеющих на своем балансе трансформаторные подстанции и другое высоковольтное оборудование которое питается от сети выше 1кВ.

Счетчик трансформаторного включения имеет 10 либо 11 выводов:

Как видно на картинке выше выводы №1, 3, 4, 6, 7 и 9 используются для подключения токовых цепей (от трансформаторов тока), а выводы №2, 5, и 8 — для подключения цепей напряжения (от трансформаторов напряжения — при косвенной схеме включения либо напрямую от сети — при полукосвенном включении). 10 вывод, как и 11 (при его наличии), служит для подключения нулевого проводника к счетчику.

В соответствии с п. 1.5.16. ПУЭ класс точности трансформаторов тока и напряжения для присоединения расчетных счетчиков электроэнергии должен быть не более 0,5.

Кроме того в соответствии с п.1.5.23. ПУЭ цепи учета (цепи от трансформаторов до счетчика) следует выводить на самостоятельные сборки зажимов или секции в общем ряду зажимов. При отсутствии сборок с зажимами необходимо устанавливать испытательные блоки.

При этом токовые цепи должны выполняться сечением не менее 2,5 мм2 по меди и не менее 4 мм2 по алюминию (п.3.4.4 ПУЭ), а сечение и длина проводов и кабелей в цепях напряжения счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения (п. 1.5.19. ПУЭ).

(Как правило цепи напряжения выполняются тем же сечением, что и токовые цепи)

Как было написано выше цепи учета необходимо выводить на сборки зажимов или испытательные блоки, так что же представляет из себя испытательный блок?

Испытательный блок или испытательная коробка представляет из себя сборку зажимов предназначенных для подключения электросчетчика и обеспечивающих возможность удобного и безопасного проведения работ со счетчиком:

ВАЖНО! Винты для закорачивания первых выводов токовых цепей обязательно должны быть вкручены при семипроводной схеме подключения и выкручены при десятипроводной схеме.

Перемычки для закорачивания токовых цепей должны быть замкнуты только на время монтажа и проведения других работ со счетчиком, в рабочем положении перемычки должны быть разомкнуты!

Как уже было написано выше при напряжении сети 0,4 кВ (380 Вольт) и нагрузках свыше 100 Ампер применяются схемы полукосвенного включения счетчика, при которой цепи напряжения подключаются к счетчику напрямую, а токовые цепи подключаются через трансформаторы тока:

Примечание: Расчет трансформатора тока можно произвести с помощью нашего онлайн калькулятора.

Существуют следующие схемы подключения счетчиков через трансформаторы: десятипроводные, семипроводные и с совмещенными цепями (может использоваться только при полукосвенном включении). Разберем каждую из схем в отдельности:

2.1 Десятипроводная схема

Принципиальная десятипроводная схема подключения счетчика через трансформаторы тока:

Фактически десятипроводная схема будет иметь следующий вид:

Преимущества десятипроводной схемы:

  1. Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
  2. Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
  3. Высокая надежность. Учет по каждой фазе собирается независимо друг от друга. В случае нарушения цепей учета по одной из фаз работа учета на других фазах не нарушается.

Недостатки десятипроводной схемы:

  1. Большой расход проводника, для сборки вторичных цепей учета.

2.2 Семипроводная схема

Принципиальная семипроводная схема подключения электросчетчика через трансформаторы тока:

Фактически семипроводная схема будет иметь следующий вид:

Примечание: Обратите внимание в принципиальной схеме закорочены и заземлены выводы «И2» трансформаторов тока, в то время как в фактической семипроводной схеме закорочены и заземлены выводы «И1». Для правильной работы схемы учета не имеет значения какую группу выводов заземлять (И1 или И2), главное что бы заземлены они были только с одной стороны, поэтому оба варианта схем верны.

Преимущества семипроводной схемы:

  1. Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
  2. Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
  3. Экономия проводника, для сборки вторичных цепей учета за счет объединения вторичных токовых цепей.

Недостатки семипроводной схемы:

  1. Низкая надежность. В случае нарушения совмещенной токовой цепи электроэнергия не учитывается ни по одной из фаз.

2.3 Схема с совмещенными цепями

Принципиальная схема подключения электросчетчика через трансформаторы тока с совмещенными цепями.

При данной схеме цепи напряжения объединяются с токовыми цепями путем установки перемычек на трансформаторах от контакта Л1 к контакту Л2.

Фактически схема с совмещенными цепями будет иметь следующий вид:

Схема с совмещенными цепями не соответствует требованиям действующих правил и в настоящее время не применяется, однако она все еще встречается в старых электроустановках.

3. Подключение счетчика через трансформаторы тока и напряжения

В случае необходимости организации учета электрической энергии в сети выше 1000 Вольт применяется схема косвенного включения счетчика при которой токовые цепи подключаются к счетчику через трансформаторы тока, а цепи напряжения подключаются через трансформаторы напряжения:

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы

Источник: https://elektroshkola.ru/uchet-elektroenergii/podklyuchenie-schetchika-cherez-transformatory/

Правильный выбор трансформатора тока по ГОСТу

Правильный выбор трансформатора тока для счетчика

Задача данной статьи дать начальные знания о том, как выбрать трансформатор тока для цепей учета или релейной защиты, а также родить вопросы, самостоятельное решение которых увеличит ваш инженерный навык.

В ходе подбора ТТ я буду ссылаться на два документа. ГОСТ-7746-2015 поможет в выборе стандартных значений токов, мощностей, напряжений, которые можно принимать для выбора ТТ. Данный ГОСТ действует на все электромеханические трансформаторы тока напряжением от 0,66кВ до 750кВ. Не распространяется стандарт на ТТ нулевой последовательности, лабораторные, суммирующие, блокирующие и насыщающие.

Кроме ГОСТа пригодится и ПУЭ, где обозначены требования к трансформаторам тока в цепях учета, даны рекомендации по выбору.

Выбор номинальных параметров трансформаторов тока

До определения номинальных параметров и их проверки на различные условия, необходимо выбрать тип ТТ, его схему и вариант исполнения. Общими, в любом случае, будут номинальные параметры. Разниться будут некоторые критерии выбора, о которых ниже.

1. Номинальное рабочее напряжение ТТ. Данная величина должна быть больше или равна номинальному напряжению электроустановки, где требуется установить трансформатор тока. Выбирается из стандартного ряда, кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

2. Далее, перед нами встает вопрос выбора первичного тока ТТ. Величина данного тока должна быть больше значения номинального тока электрооборудования, где монтируется ТТ, но с учетом перегрузочной способности.

Приведем пример из книги. Допустим у статора ТГ ток рабочий 5600А. Но мы не можем взять ТТ на 6000А, так как турбогенератор может работать с перегрузкой в 10%. Значит ток на генераторе будет 5600+560=6160. А это значение мы не замерим через ТТ на 6000А.

Выходит необходимо будет взять следующее значение из ряда токов по ГОСТу.

Приведу этот ряд: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. После 6000 идет 8000. Однако, некоторое электрооборудование не допускает работу с перегрузкой. И для него величина тока будет равна номинальному току.

Но на этом выбор первичного тока не заканчивается, так как дальше идет проверка на термическую и электродинамическую стойкость при коротких замыканиях.

2.1 Проверка первичного тока на термическую стойкость производится по формуле:

Данная проверка показывает, что ТТ выдержит определенную величину тока КЗ (IТ) на протяжении определенного промежутка времени (tt), и при этом температура ТТ не превысит допустимых норм. Или говоря короче, тепловое воздействие тока короткого замыкания.

iуд – ударный ток короткого замыкания

kу – ударный коэффициент, равный отношению ударного тока КЗ iуд к амплитуде периодической составляющей. При к.з. в установках выше 1кВ ударный коэффициент равен 1,8; при к.з. в ЭУ до 1кВ и некоторых других случаях – 1,3.

2.2 Проверка первичного тока на электродинамическую стойкость:

В данной проверке мы исследуем процесс, когда от большого тока короткого замыкания происходит динамический удар, который может вывести из строя ТТ.

Для большей наглядности сведем данные для проверки первичного тока ТТ в небольшую табличку.

3. Третьим пунктом у нас будет проверка трансформатора тока по мощности вторичной нагрузки. Здесь важно, чтобы выполнялось условие Sном>=Sнагр. То есть номинальная вторичная мощность ТТ должна быть больше расчетной вторичной нагрузки.

Вторичная нагрузка представляет собой сумму сопротивлений включенных последовательно приборов, реле, проводов и контактов умноженную на квадрат тока вторичной обмотки ТТ (5, 2 или 1А, в зависимости от типа).

Величину данного сопротивления можно определить теоретически, или же, если установка действующая, замерить сопротивление методом вольтметра-амперметра, или имеющимся омметром.

Сопротивление приборов (амперметров, вольтметров), реле (РТ-40 или современных), счетчиков можно выцепить из паспортов, которые поставляются с новым оборудованием, или же в интернете на сайте завода.

Если в паспорте указано не сопротивление, а мощность, то на помощь придет известный факт – полное сопротивление реле равно потребляемой мощности деленной на квадрат тока, при котором задана мощность.

Схемы включения ТТ и формулы определения сопротивления по вторичке при различных видах КЗ

Не всегда приборы подключены последовательно и это может вызвать трудности при определении величины вторичной нагрузки. Ниже на рисунке приведены варианты подключения нескольких трансформаторов тока и значение Zнагр при разных видах коротких замыканий (1ф, 2ф, 3ф – однофазное, двухфазное, трехфазное).

В таблице выше:

zр – сопротивление реле

rпер – переходное сопротивление контактов

rпр – сопротивление проводов определяется как длина отнесенная на произведение удельной проводимости и сечения провода. Удельная проводимость меди – 57, алюминия – 34,5.

Кроме вышеописанных существуют дополнительные требования для ТТ РЗА и цепей учета – проверка на соблюдение ПУЭ и ГОСТа.

Выбор ТТ для релейной защиты

Трансформаторы тока для цепей релейной защиты исполняются с классами точности 5Р и 10Р. Должно выполняться требование, что погрешность ТТ (токовая или полная) не должна превышать 10%.

Для отдельных видов защит эти десять процентов должны обеспечиваться вплоть до максимальных токов короткого замыкания. В отдельных случаях погрешность может быть больше 10% и специальными мероприятиями необходимо обеспечить правильное срабатывание защит.

Подробнее в ПУЭ вашего региона и справочниках. Эта тема имеет множество нюансов и уточнений. Требования ГОСТа приведены в таблице:

Хоть это и не самые высокие классы точности для нормальных режимов, но они и не должны быть такими, потому что РЗА работает в аварийных ситуациях, и задача релейки определить эту аварию (снижение напряжения, увеличение или уменьшение тока, частоты) и предотвратить – а для этого необходимо уметь измерить значение вне рабочего диапазона.

Выбор трансформаторов тока для цепей учета

К цепям учета подключаются трансформаторы тока класса не выше 0,5(S). Это обеспечивает бОльшую точность измерений.

Однако, при возмущениях и авариях осциллограммы с цепей счетчиков могут показывать некорректные графики токов, напряжений (честное слово). Но это не страшно, так как эти аварии длятся недолго.

Опаснее, если не соблюсти класс точности в цепях коммерческого учета, тогда за год набежит такая финансовая погрешность, что “мама не горюй”.

ТТ для учета могут иметь завышенные коэффициенты трансформации, но есть уточнение: при максимальной загрузке присоединения, вторичный ток трансформатора тока должен быть не более 40% от максимального тока счетчика, а при минимальной – не менее 5%. Это требование п.1.5.17 ПУЭ7 допускается при завышенном коэффициенте трансформации. И уже на этом этапе можно запутаться, посчитав это требование как обязательное при проверке.

По требованиям же ГОСТ значение вторичной нагрузки для классов точности до единицы включительно должно находиться в диапазоне 25-100% от номинального значения.

Диапазоны по первичному и вторичному токам для разных классов точности должны соответствовать данным таблицы ниже:

Исходя из вышеописанного можно составить таблицу для выбора коэффициента ТТ по мощности. Однако, если с вторичкой требования почти везде 25-100, то по первичке проверка может быть от 1% первичного тока до пяти, плюс проверка погрешностей. Поэтому тут одной таблицей сыт не будешь.

Таблица предварительного выбора трансформатора тока по мощности и току

Пройдемся по столбцам: первый столбец это возможная полная мощность нагрузки в кВА (от 5 до 1000). Затем идут три столбца значений токов, соответствующих этим мощностям для трех классов напряжений – 0,4; 6,3; 10,5. И последние три столбца – это разброс возможных коэффициентов трансформаторов тока. Данные коэффициенты проверены по следующим условиям:

  • при 100%-ой нагрузке вторичный ток меньше 5А (ток счетчика) и больше 40% от 5А
  • при 25%-ой нагрузке вторичный ток больше 5% от 5А

Я рекомендую, если Вы расчетчик или студент, сделать свою табличку. А если Вы попали сюда случайно, то за Вас эти расчеты должны делать такие как мы – инженеры, электрики =)

К сведению тех, кто варится в теме. В последнее время заводы-изготовители предлагают следующую услугу: вы рассчитываете необходимые вам параметра тт, а они по этим параметрам создают модель и производят.

Это выгодно, когда при выборе приходится варьировать коэффициент трансформации, длину проводов, что приводит и к удорожанию схемы и увеличению погрешностей.

Некоторые изготовители даже пишут, что не сильно и дороже выходит, чем просто серийное производство, но выигрыш очевиден. Интересно, может кто сталкивался с подобным на практике.

Вот так выглядят основные моменты выбора трансформаторов тока. После выбора и монтажа, перед включением, наступает самый ответственный момент, а именно пусковые испытания и измерения.

Сохраните в закладки или поделитесь с друзьями

Последние статьи

Испытание трансформаторного масла на пробой

Генераторы Хартли и Колпитца

Создание документа в ворде, добавление и удаление страниц

Самое популярное

Единицы измерения физвеличин

Источник: https://pomegerim.ru/electricheskie-apparaty/kak-vybrat-transformator-toka.php

Как рассчитать нужные трансформаторы тока?

Правильный выбор трансформатора тока для счетчика

При организации электроснабжения предприятий, жилых и коммерческих объектов, в тех случаях, когда суммарный ток нагрузки многократно превышает возможности узла учета, или же необходимо произвести учет электроэнергии высоковольтных потребителей, устанавливаются дополнительные узлы преобразования — трансформаторы тока (ТТ) и напряжения (ТН).

Они позволяют произвести линейное преобразование и осуществить учет или контроль проходящего тока с помощью обычных однофазных или трехфазных электросчетчиков, амперметров, а также организовать систему защиты линии с помощью них. В этой статье мы узнаем как выбрать трансформатор тока для счетчика электроэнергии по мощности и другим параметрам.

Выбор коэффициента трансформации измерительных трансформаторов тока 6-10 кВ

Измерительные трансформаторы тока 6-10 кВ используются в реклоузерах (ПСС), пунктах коммерческого учета (ПКУ), камерах КСО — везде, где требуется учет электроэнергии или контроль тока для защиты линии от перегрузки.

Одним из основных параметров трансформатора тока (ТТ) является коэффициент трансформации, который чаще всего имеет обозначение 10/5, 30/5, 150/5 или аналогичное. Попробуем разобраться, что это означает, и как правильно выбрать коэффициент трансформации трансформатора тока.

Важно! Трансформатор тока по природе является повышающим, поэтому его вторичная обмотка должна быть всегда замкнута накоротко через амперметр или просто перемычкой. Иначе он сгорит или ударит кого-нибудь током.

Зачем нужны трансформаторы тока

Электрики, знакомые с электрооборудованием ~220 В могут заметить, что квартирные счетчики электроэнергии подключаются непосредственно к линии без использования трансформаторов тока.

Однако уже в трехфазных сетях трансформаторное подключение встречается чаще, чем прямое включение.

В цепях же ПКУ и распределительных устройств 6-10 кВ все измерительные устройства подключаются через трансформаторы тока.

Трансформатор тока предназначен для уменьшения величины измеряемого тока и приведения его к стандартному диапазону. Как правило, ток преобразуется к стандартному значенияю 5 А (реже — 1 А или 10 А).

Еще одним назначением трансформаторов тока является создание гальванической развязки между измеряемой и измерительной цепями.

Как выбрать трансформатор тока

Максимальный рабочий ток первичной обмотки трансформатора определяется мощностью силового трансформатора на понижающей подстанции.

Например, если мощность подстанции 250 кВА, то при номинальном напряжении линии 10 кВ ток не будет превышать 15 А. Значит коэффициент трансформации трансформаторов тока должен быть не менее 3 или, как это часто обозначают, 15/5.

Использование трансформаторов тока меньшего номинала может привести к тому, что ток во вторичной обмотке будет значительно превышать заданное значение 5 А, что может привести к существенному снижению точности измерений или даже выходу из строй счетчика электроэнергии.

Таким образом, минимальное значение коэффициента трансформации ТТ ограничивается номинальным током линии.

А существуют ли ограничения на коэффициент трансформации с другой стороны? Можно ли использовать, например, вместо трансформаторов 15/5 трансформаторы 100/5? Да, такие ограничения существуют.

Если использовать трансформаторы тока с непропорционально большим номиналом, то результатом будет слишком малый ток во вторичной обмотке трансформатора, который счетчик электроэнергии не сможет измерять с необходимой точностью.

Чтобы не производить каждый раз громоздкие математические вычисления, был выработан ряд правил по выбору коэффициента трансформации ТТ. Эти правила зафиксированы в настольной книге каждого энергетика — в «Правилах устройсва электроустановок» (ПУЭ).

Правила устройства электроустановок допускают использование трансформаторов тока с коэффициентом трансформации выше номинального. Однако такие трансформаторы ПУЭ называют «трансформаторами с завышенным коэффициентом трансформации» и ограничивают их использование следующим образом.

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

Поскольку упомянутое в ПУЭ понятие минимальной рабочей нагрузки является не очень понятным, то используют и другое правило:

Завышенным по коэффициенту трансформации нужно считается трансформатор тока, у которого при 25% расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке менее 10% номинального тока счетчика.

Таким образом, максимально возможное значение коэффициента трансформации применяемых трансформаторов тока ограничивается чувствительностью счетчиков электроэнергии.

Расчет минимального и максимального значения коэффициента трансформации

Для расчета номинала трансфоррматора тока необходимо знать диапазон рабочих токов в первичной обмотке трансформатора.

Минимальный коэффициент трансформации ТТ рассчитывается, исходя измаксимального рабочего тока в линии. Максимальный рабочий ток можно вычислить, исходя из общей мощности потребителей электроэнергии, находящихся в одной сети.

Но производить эти вычисления нет необходимости, так как все расчеты уже были проделаны ранее при проектировании трансформаторной подстанции.

Как правило, номинал силового трансформатора выбран таким, чтобы регулярная нагрузка не превышала номинальную мощность трансформатора, а кратковременная пиковая нагрузка превышала мощность трансформатора не более, чем на 40%.

Нужно различать полную мощность (измеряется в кВА) и полезную мощность (измеряется в кВт). Полная мощность связана с полезной через коэффициент мощности, характеризующий реактивные потери в сети. Больше информации по теме можно получить на другой странице нашего сайта.

Поделив потребляемую мощность на номинальное напряжение сети и уменьшив полученное значение на корень из 3, получим максимальный рабочий ток. Отношение максимального рабочего тока к номинальному току счетчика электроэнергии и даст искомый минимальный коэффициент трансформации.

Например, для подстанции мощностью 250 кВА при номинальном напряжении сети 10 кВ максимальный рабочий ток составит около 15 А. Поскольку кратковременный максимальный рабочий ток может достигать 20 А, то минимальный номинал трансформатора тока лучше взять с небольшим запасом — 20/5.

Максимальный коэффициент трансфортмации ТТ определим, умножив минимальный коэффициент трансформации на отношение уровеня рабочего тока (в процентах от максимального) к уровеню тока во вторичной обмотке трансформатора (также в процентах от максимального).

Источник: https://1000eletric.com/kak-rasschitat-nuzhnye-transformatory-toka/

Трансформаторы тока для электросчетчиков: подключение счетчика

Правильный выбор трансформатора тока для счетчика

Современные потребности в электроэнергии настолько высоки, что приборы учета могут не выдерживать силу тока, необходимую для подключенного объекта.

Разделение точек потребления на отдельные линии не всегда возможно, да и учитывать потребление энергии разными приборами для одного объекта нецелесообразно: расчет оплаты может быть неточным.

Чтобы устранить этот дисбаланс, применяются трансформаторы тока для электросчетчиков.

Устройства работают по обычному принципу трансформатора: закону электромагнитной индукции.

  • первичная обмотка подключается в рабочую цепь последовательно с основной нагрузкой, не оказывая влияние на параметры питания;
  • при протекании электротока, вокруг первичной обмотки наводится магнитный поток, величина которого пропорциональна силе тока в рабочей цепи;
  • посредством магнитопровода, во вторичной обмотке возникает ЭДС (электродвижущая сила);
  • под воздействием ЭДС в обмотке возникает электроток, который можно измерить на приборе учета со стандартными параметрами подключения.

Схема типового подключения счетчика с трансформаторами тока изображена на иллюстрации (данный рисунок не является инструкцией по монтажу, может использоваться лишь как учебное пособие).

  1. На контакты «Л1», «Л2» первичной обмотки подключается рабочая силовая линия (ток «I1» протекает через обмотку). Проводник должен выдерживать рабочие параметры линии, и не оказывать большого сопротивления, чтобы не снижать рабочие параметры электроснабжения объекта.
  2. Вторичная обмотка изготавливается с учетом рабочих параметров силовой линии с коэффициентом, достаточным для обеспечения работы счетчика.
  3. Приборы учета и средства контроля (защиты) подключаются к контактам «И1», «И2».
  4. Сила тока вторичной обмотки «I2» собственно является объектом измерения, учета и сигнальным параметром для срабатывания устройств защиты.
  5. Для защиты вторичной обмотки от перенапряжения применяется перемычка «К», шунтирующая цепь при отключении приборов учета (иных измерителей).

Важное отличие измерительного трансформатора тока от обычного силового

Независимо от сопротивления потребителя (это может быть подключение к электросчетчику, защитному устройству, и прочему) сила тока остается неизменной и зависит только от нагрузки на первичную обмотку.

При размыкании вторичной обмотки трансформатора тока во время работы силовой линии, напряжение на контактах достигнет огромного значения (по закону Ома стремится к бесконечности). В результате могут выйти из строя полупроводниковые приборы измерения.

Кроме того, есть риск повреждения изоляции обмотки трансформатора, и поражения персонала электротоком. Поэтому, при отключении счетчика от трансформаторов тока, вторичная обмотка обязательно замыкается накоротко с помощью перемычки «К» (на иллюстрации).

Важно: Для обеспечения безопасности операторов и защиты оборудования, один из контактов вторичной обмотки заземляется («N» на иллюстрации).

Таким подсоединением уравнивается потенциал вторичной обмотки и земли. Работа с приборами учета и контроля становится безопасной для персонала.

Конструктивное исполнение прибора оптимизировано для соединения со счетчиками, поэтому случайное использование трансформатора тока в иных целях исключено.

Можно сказать, что трансформатор тока для счетчика работает по принципу вала отбора мощности на двигателе. Только его использование не несет потери для основной линии электроснабжения.

Для чего нужны трансформаторы тока

Для счетчиков энергии и других измерительных приборов, подключение к высоковольтной линии чревато усложнением конструкции (соответственно, стоимость прибора может вырасти в разы).

Аналогичная ситуация с иными контрольными приспособлениями и устройствами обеспечения безопасности. Необходимо обеспечить развязку между высоковольтной линией и параметрами, приемлемыми для работы.

Исходя из этого, назначение трансформатора тока следующее:

  1. Произведя расчет пропорций рабочих параметров на вторичной обмотке, инженеры получают коэффициент измерений. Вторичка подключается к любым измерительным приборам: амперметрам, ваттметрам, счетчикам электроэнергии, и прочему. Переменный ток малого значения удобен в работе, не представляет опасности для персонала, измеряется обычными приборами без дорогостоящих систем защиты. Учитывая компактность, трансформаторы легко монтируются в типовой распределительный щиток.
  2. Еще одна функция трансформатора тока — обеспечение работы систем управления и защиты. Для вывода информации о состоянии электрических цепей достаточно небольшого уровня сигнала. Гигантские значения напряжения на силовых линиях не позволяют подключить к ним управляющие цепи. Поэтому компоненты релейной защиты и управления соединяются с вторичными обмотками трансформаторов, и работают на линиях в десятки тысяч вольт, как будто это бытовой вводной щиток в квартире. Разумеется, безопасность также на высоте.

Мы рассмотрим основную задачу прибора: подключение счетчика через трансформаторы тока. Поскольку однофазные системы работают без высоких потенциалов напряжения, трансформаторы тока чаще всего обеспечивают работу трехфазного счетчика.

Начнем с классификации

Как и любой электроприбор, подобрать трансформатор можно по параметрам и установочным характеристикам:

  • Назначение: измерительный, управляющие и лабораторные. Нас интересует, как подключить измерительный вариант.
  • Номинальное напряжение первичной обмотки, один из основных параметров: до 1000 В или свыше 1000 В.
  • Конструкция первичной обмотки. Одновитковые, многовитковые, стержневые, шинные, катушечные. От конструкции первички зависит способ монтажа.
  • Способ установки: трансформаторы могут встраиваться в электроустановку, накладываться на силовые шины, монтироваться в распределительные шкафы или трансформаторные подстанции. Кроме того, существуют переносные приборы для организации контроля или временного учета электроэнергии.
  • Тип монтажа: в зависимости от выбранного способа установки и подключения, монтаж может быть проходным или опорным. На иллюстрации проходной тип монтажа.
  • Количество ступеней трансформации. При работе с высоким напряжением, может потребоваться каскадное снижение выходных параметров. При этом можно выбирать, куда подключать измерительные (управляющие) приборы: на один или несколько каскадов трансформации.
  • Тип изоляции между обмотками и сердечником. Как и в обычных трансформаторах: сухая (керамика, бакелит, некоторые виды пластмасс) или мокрая (классическая бумажно-маслянная). Современные компактные трансформаторы заливаются компаундом. Параметр учитывается при выборе температурного режима эксплуатации: высокий нагрев или наружная установка при минусовых температурах.

Важно: При подключении 3 фазного счетчика через трансформаторы тока, параметры всех приборов должны быть идентичными.

Разобравшись, как выбрать трансформатор тока по способу установки, научимся производить расчет

С учетом параметров электрических счетчиков, и значения напряжения на линии, выбираем коэффициент трансформации. Он должен обеспечивать максимальную точность измерения трехфазного счетчика, при соблюдении мер безопасности.

Согласно требованиям ПУЭ (правил устройства электроустановок), необходимо оставлять запас коэффициента трансформации на превышение допустимой нагрузки. При максимальной нагрузке на линии, ток во вторичной обмотке не должен быть ниже 40 % от номинального тока счетчика. Соответственно при минимальной нагрузке этот показатель составит 5 %.

Существует целая подборка справочной литературы по этому вопросу, наиболее популярной является типовая таблица:

Зная расчетные параметры силовой линии и возможного потребления тока, можно рассчитать коэффициент трансформации.

Перед вводом в эксплуатацию, обычно производится испытательный монтаж на тестовую колодку. Моделируются рабочие условия эксплуатации объекта, при соблюдении мер безопасности испытываются аварийные режимы.

Важно: Подобные испытания следует проводить только под надзором инженеров по безопасности энергоснабжающей компании.

После проведения тестовых измерений на дублирующих счетчиках, проводится окончательный расчет коэффициента преобразования. Затем составляется акт переноса показаний на счетчики с учетом параметров трансформатора.

Если параметры работы устраивают потребителя и поставщика электроэнергии, производится окончательный монтаж трансформаторов и трехфазного счетчика. Типовая электросхема на иллюстрации:

Пример реального расчета коэффициента трансформации

Мы знаем, что для обеспечения завышенного коэффициента трансформации, необходимо обеспечить следующее условие:

  • при загрузке силовой (основной) линии на 25 %, во вторичной обмотке сила тока не превысит 10 % от расчетной.

Условия задачи: расчетный ток в режиме нормальной загрузки оборудования составляет 240 А. Устанавливаем параметры аварийного режима: коэффициент 1.2. Значит, сила тока при перегрузке равна 288 А. Номинальная сила тока счетчика составляет 5 А.

Важно: Перегрузкой считается сила тока, при которой еще не срабатывает защитное устройство отключения электропитания.

По рекомендациям энергетиков, или в соответствии со справочными таблицами, выбираем трансформатор тока с коэффициентом трансформации 300/5.

  • Проводим расчет тока первичной обмотки при нагрузке 25 % от номинала. I1=240×25/100. Полученный результат: 60 А.
  • Проводим расчет тока вторичной обмотки при нагрузке 25 % от номинала. I2=60/(300/5). Полученный результат: 1 А.

Вторичный ток превышает 10 % от номинальной силы тока счетчика: 1 А > 0.5 А. При таких расчетах видно, что трансформатор тока для подключения конкретного счетчика подобран верно.

Класс точности и погрешность

Для обеспечения правильности учета показаний потребления электроэнергии, регламентирующими нормативами установлены следующие классы точности для токовых трансформаторов:

  • счетчики коммерческого учета: 0.2;
  • счетчики технического учета: 0.5.

Условия считаются выполненными, если реальная нагрузка на вторичную обмотку трансформатора не превышает номинально установленную нагрузку для данного класса точности.

Кроме того, параметры прибора должны обеспечивать токовую и угловую погрешность. Для нормальной работы устройств защиты и точного снятия показаний, токовая погрешность не должна превышать 10 %, а угловая 7°.

Результат построения векторной диаграммы токов на иллюстрации:

Iµ=I1+I2, остальные параметры и обозначения взяты из школьного курса физики. Проведя тестовые измерения, можно убедиться в соответствии (не соответствии) собранной схемы требованиям ГОСТ и ПУЭ.

по теме

Источник: https://ProFazu.ru/elektrooborudovanie/schetchiki/transformatory-toka-dlya-elektroschetchikov.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.