Закон Ампера простым языком

Закон Ампера простым языком

Закон Ампера простым языком
Электричество — это достаточно сложный раздел физики, он переполнен различными законами и явлениями, которые сопровождают протекание тока в проводнике.

Например, если у нас есть два и больше проводников, по которым протекает электрический ток, то проводники будут притягиваться или отталкиваться друг от друга. Это проявление силы Ампера.

В этой статье мы простым языком расскажем, что это за явление и где оно применяется.

Определение

Закон Ампера гласит, что сила, которая возникает вокруг проводника, прямо пропорциональна его длине, силе тока и магнитной индукции, а также косинуса угла между проводником и вектором магнитной индукции. Соответственно его формула:

F=BILcosa

Эта F является силой Ампера. Ничего не напоминает? И формула, и сам её физический смысл аналогичен силе Лоренца. Отличием является лишь то, что закон Ампера справедлив для проводника в магнитном поле, а Лоренца действует на заряженные частицы.

Если его представить в векторной форме, то уравнение будет иметь вид:

А в дифференциальной форме:

Есть и другая формулировка: закон Ампера характеризует силу, действующую на проводник в магнитном поле. Он был открыт Андре Мари Ампером в 1820 году.

В чем измеряется сила Ампера? Как и другие силы в физике – в Ньютонах (Н).

Интересно! В отечественной физике в большинстве случаев придерживаются системы единиц измерения СИ.

Так вот в этой системе под величиной 1 Ампер понимают такой ток, при протекании которого по двум проводникам расположенным параллельно и в 1 метре друг от друга, возникала бы сила взаимодействия в 2*10(-7) Н.

При этом они имеют бесконечную длину, минимальную площадь поперечного сечения и расположены в вакууме.

Так как этот закон подразумевает возникновение какой-то силы, то нет сомнений что при наличии нескольких таких сил они будут взаимодействовать между собой. Давайте разберёмся как именно.

При взаимодействии параллельных токов, протекающих в одном направлении, два расположенных рядом проводника начнут притягиваться. Если токи будут протекать в разных направлениях — проводники будут отталкиваться. Это и есть самое важное действие в этом законе.

Направление силы Ампера

Чтобы определить направление этих сил используют правило левой руки. Для этого нужно раскрытую ладонь левой руки расположить около проводника так, чтобы в неё входили линии вектора индукции магнитного поля, а четыре раскрытых пальца указывали направление протекания тока. Тогда отогнутый под прямым углом большой палец укажет направление силы Ампера и Лоренца.

Напомним, что направление вектора магнитной индукции определяется с помощью правила правой руки.

Для этого нужно обогнуть четыре пальца правой руки вокруг проводника, большой палец отогнуть под прямым углом (словно показываете «класс»), так чтобы он указывал направление тока.

Тогда четыре согнутых пальца будут показывать, как проходят линии магнитного поля, они будут описывать окружности вокруг токопроводящей жилы.

Применение на практике

Закон Ампера является одним из важнейших законов электротехнике. Давайте рассмотрим примеры из его практического применения. Основой почти любого предприятия является электропривод. Двигателя и электромагнитные исполнительные механизмы используются для перемещения или приведения в действие различных узлов:

  • автоматизированных задвижек трубопроводов;
  • грузоподъемных механизмов;
  • электротранспорта (электровозы на жд);
  • трамваи;
  • троллейбусы;
  • электрокары и прочее.

Сила Ампера заставляет двигатель вращаться, из-за взаимодействия между обмотками ротора и статора. Для того чтобы обмотки вращались, их либо переключают с помощью щеточного узла и коллектора в двигателях постоянного тока, либо используют переменный ток.

В динамиках и громкоговорителях тоже закон Ампера нашел свое применение. Там происходит движение мембраны, на которой расположена обмотка из медной проволоки в магнитном поле постоянного магнита.

Её действие наблюдается при коротких замыканиях на ЛЭП. Где под воздействием сверхбольших токов шины и провода начинают изгибаться.

В момент выстрела из рельсотрона у него раздвигаются рельсы. Это обусловлено уже перечисленными причинами.

Напоследок рекомендуем просмотреть полезное видео по теме:

Все явления в электричестве важны, некоторые вносят меньшее влияние, некоторые большее. Однако понимать, где и как они проявляются должен каждый, кто связан с этой сферой, независимо электромонтер, АСУшник или КИПовец. Надеемся, теперь вы знаете, что описывает закон Ампера, а также какое его практическое значение!

Материалы по теме:

Источник: https://samelectrik.ru/zakon-ampera-prostym-yazykom.html

Открытие магнитных свойств тока. Закон Ампера

Закон Ампера простым языком

Девятнадцатый век, видимо, в назидание двадцатому веку, веку узкой научной специализации, перенимает прекрасную традицию восемнадцатого столетия и оставляет нам память об удивительно разносторонних ученых.

Ганс Христиан Эрстед получил золотую медаль при окончании Копенгагенского университета за литературное эссе «Границы поэзии и прозы», представив одновременно химическое исследование о свойствах щелочей.

Диссертация, за которую Эрстед был удостоен звания доктора философии, посвящена медицине, свои самостоятельные исследования он начал в университете на кафедре фармацевтики, где изучали лекарства, а стал профессором по кафедре физики.

Возникновение тепла при прохождении тока от гальванических элементов через тонкую платиновую проволочку не давало Эрстеду покоя.

Электричество и тепло взаимосвязаны, думал он, но, возможно, имеется нечто общее между другими разнородными и внешне непохожими явлениями, например между электричеством и магнетизмом? Говорят, чтобы постоянно помнить об этой проблеме, Эрстед все время носил в кармане небольшой магнит…

В 1813 году Эрстед пишет в своем труде «Исследование идентичности химических и электрических сил», вышедшем из печати во Франции: «Следует испробовать, не производит ли электричество… каких-либо действий на магнит…»

Проходит семь лет. Весной 1820 года Эрстед впервые замечает, что при прохождении электрического тока лежащая рядом с проводом магнитная стрелка начинает отклоняться. После семи лет обдумываний следуют три недели лихорадочных экспериментов.

Разве могли предвидеть ученые, изучавшие магнитные и электрические явления, что их открытия приведут к созданию электростанций и электрического освещения? Уютно мерцают залитые светом окна загородного дома.

Эрстед обнаруживает, что на повороты стрелки влияет ее удаленность от провода и электрическое напряжение гальванического элемента; материал провода значения не имеет.

Эрстед отмечает странную вещь: сила, действующая между магнитом и электрическим током, направлена не по прямой, соединяющей их, а перпендикулярно к ней!

Эрстед вскоре разошлет ведущим ученым Европы статью на четырех страничках, называемую, по обычаю того времени, «мемуаром», в которой опишет свои опыты. В мемуаре Эрстеда найдет отражение и тонкое наблюдение, что «магнитный эффект электрического тока имеет круговое движение вокруг него». Будто провод окольцован магнитными силами…

Франсуа Араго и Анри Мари Ампер

Ученый секретарь Французской Академии Франсуа Араго знакомится с опытами Эрстеда в Женеве и 4 сентября 1820 года делает в Париже на заседании Академии устное сообщение о них.

Опыты Эрстеда поразили Араго. Ведь он сам уже много лет собирает сведения о связи атмосферных электрических явлений с поведением магнитных веществ на земле и готовится поставить лабораторные эксперименты по проверке своих предположений.

Участвуя в работе экспертной комиссии по выяснению причин кораблекрушений, Араго замечал, что у кораблей после сильного шторма на море стрелки компасов показывали в разные стороны, а железные предметы на борту сильно намагничивались. Вызвать это могла только молния…

Волнение Араго передалось членам Академии. Они просят Араго на заседании, намеченном на 22 сентября 1820 года, продемонстрировать им опыты Эрстеда.

Внимательно слушает Араго выдающийся математик Анри Мари Ампер. У него рождается проницательная мысль: если проводник тока всегда окружен магнитными силами, то «электрический конфликт» (пользуясь образным выражением Эрстеда) должен возникать не только между проводом и магнитной стрелкой, но и между двумя проводами, по которым течет ток!

Члены Французской Академии А. Ампер (слева) и Ф. Араго изучают действие магнитного поля на проводник, по которому течет электрический ток.

В течение этого знаменательного заседания глубокий теоретик превращается в увлеченного экспериментатора. За семь дней Ампер конструирует оригинальный электрический прибор и на следующих заседаниях Академии — 11 и 18 сентября — демонстрирует присутствующим взаимодействие двух проводников с током!

Если в обоих проводниках электрические токи текут параллельно друг другу в одном направлении, то они притягиваются, обнаруживает Ампер; эти же проводники отталкиваются, когда токи в них проходят во взаимно противоположных направлениях.

Затем Ампер выведет простую формулу, которая позволит рассчитать силу взаимодействия двух проводников в том случае, когда они установлены под углом друг к другу. Формула будет названа впоследствии законом Ампера

Ампер продолжает свои опыты. Свернув проводники в виде двух спиралей, получивших название соленоидов, он доказывает, что соленоиды, установленные рядом, при пропускании тока ведут себя подобно двум магнитам.

Ампер исследует влияние магнитного поля Земли на движение проводника, соленоида и металлической рамки с током. Он высказывает опережающую время мысль о том, что магнит в свою очередь представляет собой совокупность токов.

В магните, считает Ампер, есть множество элементарных круговых токов, текущих перпендикулярно к его оси.

Так и кажется, что французский ученый уже знает о непрерывном движении заряженных частиц внутри каждого вещества, об открытии электрона, о планетарном строении атома, доказанном Резерфордом через столетие.

Свои сообщения на заседании Академии Ампер заключил словами: «В связи с этим я свел все магнитные явления к чисто электрическим эффектам».

Пройдет много лет, и открытия Ампера лягут в основу метода определения единицы электрического тока. На IX Международной конференции по мерам и весам в 1948 году будет решено считать основной электрической единицей один ампер— силу тока, при которой два параллельных проводника длиной в один метр взаимодействуют друг с другом с силой в две десятимиллионные части ньютона.

От силы тока в один ампер произойдет единица количества электричества, названная кулоном, единица напряжения, которая получит наименование вольта, единица сопротивления, именуемая омом.

Очевидцы рассказывали, что идеи Ампера были столь новы, что многие члены Французской Академии просто не поняли их революционного научного смысла. «Что же, собственно, нового в том, что вы нам сообщили? — спросил на заседании один из них, обращаясь к Амперу.— Само собой ясно, что если два тока оказывают действие на магнитную стрелку, то они оказывают действие и друг на друга?»

За Ампера его оппоненту мгновенно ответил Араго. Он вынул из кармана два ключа и сказал: «Вот каждый из них тоже оказывает действие на стрелку, однако же они никак не действуют друг на друга…»

Оба ключа, действительно, могут открыть один и тот же замок, но это не будет замок двери в страну знаний.

Источник: Марк Колтун “Мир физики“

Источник: http://www.ThingsHistory.com/otkrytie-magnitnyx-svojstv-toka-zakon-ampera/

Referat. Сила Ампера

Закон Ампера простым языком

Сила, с которой магнитное поле действует на помещенный в него проводник с током, называется силой Ампера.

Величина этой силы, действующей на элемент Δl проводника с током I в магнитном поле с индукцией \(~\vec B\) , определяется законом Ампера:

\(~\Delta F = B \cdot I \cdot \Delta l \cdot \sin \alpha\) , (1)

где α – угол между направлениями тока и вектора индукции.

Направление силы Ампера можно найти с помощью правила левой руки (рис. 1):

Рис. 1

если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутых пальца совпадали по направлению с направлением тока, то отогнутый на 90° большой палец укажет направление силы, действующей на элемент проводника.

Использование этого правила затруднительно лишь в том случае, когда угол α мал. Поскольку, однако, величина B∙sin α представляет собой модуль перпендикулярной проводнику с током компоненты вектора индукции \(~\vec B_{\perp}\) (рис. 2), то ориентацию ладони можно определять именно этой компонентой – она должна входить в открытую ладонь левой руки.

Рис. 2

Из (1) следует, что сила Ампера равна нулю, если проводник с током расположен вдоль линий магнитной индукции, и максимальна, если проводник перпендикулярен этим линиям.

Закон Ампера выполняется для любого магнитного поля. Предположим, что это поле создается длинным линейным проводником с током I2, параллельным первому проводнику c током I1 и находящимся на расстоянии r от него. Тогда индукцию магнитного поля в точках расположения первого проводника можно определить (с учетом замены II2) по формуле:

\(~B = \frac{\mu_0 \cdot I}{2 \pi \cdot r} = \frac{\mu_0 \cdot I_2}{2 \pi \cdot r}\) .

Подставляя это выражение в (1) и замечая, что в рассматриваемом случае параллельных проводников α = 90°, находим силу, действующую на линейный элемент Δl первого проводника,

\(~\Delta F = \frac{\mu_0 \cdot I_2}{2 \pi \cdot r} \cdot I_1 \cdot \Delta l = \mu_0 \cdot \frac{I_2 \cdot I_1 \cdot \Delta l}{2 \pi \cdot r} \) . (2) Совершенно ясно, что точно такое же выражение можно записать для силы, действующей на второй проводник.

Используя правило буравчика (для определения магнитной индукции проводника с током) и правило левой руки (для определения силы, действующей на проводник с током), можно убедиться в том, что если токи в проводниках текут в одинаковых направлениях, то эти проводники притягиваются (рис. 3 а, б), а если в разных – отталкиваются (рис. 4, а, б), что и подтверждается опытом.

  • а

  • б

Рис. 3

  • а

  • б

Рис. 4

Выражение (2) было положено в основу принципа определения единицы силы тока. Если в (2) считать I1 = I2 = 1 А, r = 1 м, Δl = 1 м, то получим F = 2∙10-7 Н/м. Другими словами,

если по двум параллельным, бесконечно длинным линейным проводникам, расположенным на расстоянии 1 м друг от друга, текут одинаковые токи в 1 А, то эти токи взаимодействуют с силой 2∙10-7 Н на каждый метр длины проводников.

Заметим, что единица силы тока – ампер – в СИ принадлежит, наряду с секундой, метром, килограммом, кельвином, молем и канделой, к числу основных единиц измерения физических величин.

Момент сил, действующий на прямоугольную рамку с током

Поместим в однородном магнитном поле с индукцией \(~\vec B\) прямоугольную рамку с током ABCD (рис. 5 а – вид сбоку; рис. 5 б – вид сверху), где обозначим AB = a, AD = b, β – угол между перпендикуляром к рамке и вектором магнитной индукции.

  • а

  • б

Рис. 5

На участки AD и BC магнитное поле действуют с силами, которые меняются от нуля до максимального значения (в зависимости от угла поворота рамки β) и стремятся растянуть рамку (на рис. 5 эти силы не указаны).

На участки AB и CD магнитное поле действуют с постоянными силами \(~\vec F_1\) и \(~\vec F_2\), которые направлены в противоположные стороны (на рис. 5 а силы направлены перпендикулярно плоскости рисунка) и стремятся повернуть рамку вокруг оси OO´.

Таким образом, эти силы \(~\vec F_1\) и \(~\vec F_2\) создают вращающий момент \(~M = F_1 \cdot l_1 + F_2 \cdot l_2\) , где \(~F_1 = F_2 = I \cdot B \cdot l\) (угол α = 90°), \(~l_1 = l_2 = \frac{AD}{2} \sin \beta = \frac{b}{2} \sin \beta\) , \(~l = AB = CD = a\) . Тогда

\(~M = 2 F_1 \cdot l_1 = 2I \cdot B \cdot a \cdot \frac{b}{2} \cdot \sin \beta = I \cdot B \cdot a \cdot b \cdot \sin \beta = I \cdot B \cdot S \cdot \sin \beta\) ,

где \(~S = a \cdot b\) – площадь рамки.

Момент сил будет максимальным при β = 90° (рамка расположена вдоль линий индукции)

\(~M_{max} = I \cdot B \cdot S\) . (3)

Отметим, что формула (3) справедлива не только для квадратной рамки, но и для плоской рамки другой формы.

Электрический двигатель постоянного тока

В электрических двигателях для преобразования электрической энергии в механическую используется действие силы Ампера.

Основными частями электродвигателя постоянного тока (рис. 6) являются индуктор 4, с помощью которого создается постоянное магнитное поле, якорь 3, через обмотки которого пропускается ток, и коллектор 1 с электрическими щетками 2, с помощью которых осуществляется соединение обмоток якоря с источником тока.

  • а

  • б

Рис. 6

В простейшей машине постоянного тока индуктор – это постоянный магнит или электромагнит со стальным сердечником. Обмотки электромагнита индуктора называются обмотками возбуждения.

Магнит индуктора имеет полюсные наконечники такой формы, что между ними образуется отверстие цилиндрической формы. Между полюсными наконечниками индуктора помещается якорь.

Якорь состоит из сердечника – стального цилиндра с пазами, параллельными оси цилиндра, и обмоток, вложенных в пазы сердечника (рис. 7). Выводы каждой обмотки соединены с медными контактами коллектора.

Рис. 7

Якорь насажен на ось, концы которой установлены в подшипниках, и может свободно вращаться вокруг этой оси.

Для постоянного вращения рамки с током в магнитном поле необходимо устройство, меняющее направление тока. Такое устройство – коллектор – было изобретено в XIX веке.

В простейшем случае он представляет собой два металлических полукольца 1, насаженных на общую с рамкой ось 2, и к которым припаяны провода обмотки 4 (рис. 8).

К коллектору с двух противоположных сторон прижимаются щетки 3 из графита или меди; щетки подключаются проводами 5 к источнику постоянного напряжения.

Рис. 8

При включении ток проходит через щетки, полукольца и обмотку, в результате чего под действием пары сил Ампера обмотка начинает поворачиваться и поворачивает полукольца коллектора.

Когда плоскость обмотки окажется перпендикулярной линиям магнитной индукции, вращающий момент обратится в ноль. Однако это положение обмотка проскакивает по инерции, и с этого момента каждое из полуколец, повернувшись вместе с рамкой, станет прикасаться уже к другой щетке.

В результате направление тока в обмотке изменится на противоположное, а возникший после такой смены направления тока вращающий момент будет вынуждать обмотку вращаться в прежнем направлении до тех пор, пока ее плоскость снова не станет перпендикулярной вектору индукции.

После этого направление тока в обмотке снова изменится, и она продолжит вращение, и т.д.

Скорость вращения якоря электродвигателя можно регулировать, изменяя силу тока в его обмотках; направление вращения можно изменять, изменяя направление тока в обмотке якоря или индуктора.

Электродвигатель постоянного тока может приводить в движение колеса электровоза, троллейбуса, трамвая, приводить в действие электробритву, магнитофон и другие бытовые электроприборы.

Электроизмерительные приборы

В электроизмерительных приборах магнитоэлектрической системы используется действие магнитного поля на проводник с током (рис. 9).

Рис. 9

Измеряемый электрический ток пропускается через рамку 6, помещенную в магнитное поле постоянного магнита 5. Рамка укреплена на оси 2. Измеряемый ток подводится к рамке 6 через спиральную пружину 3.

На участки проводников, расположенные перпендикулярно линиям индукции магнитного поля, действует сила Ампера.

Если бы подвижная часть измерительного механизма не имела пружину 3, противодействующую ее повороту, то при пропускании тока через рамку происходил бы поворот ее на 180° независимо от силы тока. Но силы упругости, возникающие при закручивании пружины, препятствуют повороту рамки.

Сила упругости прямо пропорциональна углу закручивания пружины, поэтому угол поворота, при котором наступает равенство моментов сил Ампера и сил упругости, пропорционален силе тока в рамке. Шкала магнитоэлектрического прибора равномерная.

При изменениях силы тока равновесие моментов сил упругости и сил Ампера нарушается, в результате подвижная система начинает совершать колебания относительно нового положения равновесия. Вместе с ней колеблется и стрелка прибора. Для устранения этих колебаний в приборах применяются специальные успокоители.

В них для торможения подвижной системы используется тонкая алюминиевая пластина 7, помещенная между полюсами постоянного магнита 8 и закрепленная на оси вращения подвижной системы. При повороте подвижной системы алюминиевая пластина успокоителя движется в поле постоянного магнита.

Наводимые в ней при этом индукционные токи тормозят движение пластины и вместе с тем вращение всей подвижной системы электроизмерительного прибора.

Для того чтобы при любом положении указательной стрелки 4 подвижная часть была уравновешена в поле тяжести, имеются противовесы 9. Установка на нулевое деление шкалы производится с помощью корректора 10.

Прибор можно проградуировать так, чтобы угол поворота определял силу тока в амперах или других единицах. Согласно закону Ома сила тока в приборе \(~I = \frac{U}{R}\) . Поэтому прибор можно проградуировать и так, чтобы определенному углу отклонения стрелки соответствовало напряжение U на зажимах прибора в вольтах или других единицах.

Таким образом, прибор может служить как амперметром, так и вольтметром. В последнем случае для увеличения сопротивления прибора нужно последовательно с катушкой включить резистор с большим сопротивлением.

Литература

  1. Буров Л.И., Стрельченя В.М. Физика от А до Я: учащимся, абитуриентам, репетиторам. – Мн.: Парадокс, 2000. – 560 с.
  2. Мякишев, Г.Я. Физика : Электродинамика. 10-11 кл. : учеб. для углубленного изучения физики / Г.Я. Мякишев, А.3. Синяков, В.А. Слободсков. – М.: Дрофа, 2005. – 476 с.
  3. Физика: Учеб. пособие для 10 кл. шк. и классов с углубл. изуч. физики/ О. Ф. Кабардин, В. А. Орлов, Э. Е. Эвенчик и др.; Под ред. А. А. Пинского. – 2-е изд. – М.: Просвещение, 1995. – 415 с.

Источник: http://www.physbook.ru/index.php/Referat._%D0%A1%D0%B8%D0%BB%D0%B0_%D0%90%D0%BC%D0%BF%D0%B5%D1%80%D0%B0

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.